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The orthogonal eigenbasis and norms of eigenvectors in the
spin Calogero–Sutherland model

Kouichi Takemura† and Denis Uglov‡
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

Received 16 December 1996, in final form 25 February 1997

Abstract. Using a technique based on the Yangian Gelfand–Zetlin algebra and the associated
Yangian Gelfand–Zetlin bases we construct an orthogonal basis of eigenvectors in the Calogero–
Sutherland model with spin, and derive product-type formulae for norms of these eigenvectors.

1. Introduction

In this paper we study the spin generalization of the Calogero–Sutherland model which
was proposed in [7] and later rediscovered in [4]. This model describesN particles with
coordinatesx1, x2, . . . , xN moving along the circle of the unit radius(06 xi 6 2π). Each
particle carries a spin withn possible values, and the dynamics of the model is governed
by the Hamiltonian

HSCSM= −
N∑
i=1

∂2

∂x2
i

+ 1

4

∑
16i 6=j6N

β(Pi,j + β)
sin2

(
xi−xj

2

) (1.1)

whereβ is a coupling constant andPi,j is the spin exchange operator for the particlesi andj .
The scalar version of theHSCSM (n = 1) has been studied over the course of the past

25 years starting with the work of Sutherland [26]. Among the recent advances one can
point out the connection of theHSCSM (n = 1) with the random matrix theory [11], exact
computation of the dynamical correlation functions [14, 16, 20] and the intriguing connection
with the Virasoro and theW -algebras [2]. To a large extent many of these developments,
in particular the computation of the correlation functions, were based on the properties
of the symmetric Jack polynomials which describe the orthogonal eigenbasis of the scalar
Calogero–Sutherland model [25, 19].

Considerably less is known about the Calogero–Sutherland model with spin(n > 2).
In the work of [4] the construction of eigenvectors for the Calogero–Sutherland model with
general spin was proposed. This construction is based on the diagonalization of the Dunkl
operators [10] by the non-symmetric Jack polynomials. Although the way to obtain the
eigenvectors was pointed out in [4], the complete and orthogonal eigenbasis has not been
constructed so far.

In the present paper we give a construction of such an eigenbasis in terms of the non-
symmetric Jack polynomials and derive explicit product-type formulae for the norms of the
eigenvectors.
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In the case of the scalar model the knowledge of explicit formulae for the norms of
the Jack polynomials has been essential for the computation of the dynamical correlation
functions. Therefore we believe that the results of our present work will turn out to be
of use in the computation of the two-point dynamical correlation functions in the spin
Calogero–Sutherland model (SCSM).

Let us now describe the main features of our construction. The principal role in it
is played by the Yangian symmetry of the SCSM. As was discovered and emphasized
in [4], the space of states in the model admits the action of the algebraY (gln)—the
Yangian of gln [9, 23]. This action is given by then × n operator-valued monodromy
matrix ‖Ta,b(u)‖16a,b6n which is regarded as the formal Taylor series in negative powers
of the spectral parameteru. The centre of the Yangian action is generated by the operator
coefficients1(s) in the expansion of the quantum determinantq detT (u) of the monodromy
matrix:

q detT (u) =
∑
σ∈Sn

(−1)l(σ )T1,σ (1)(u)T2,σ (2)(u− 1) · · · Tn,σ(n)(u− n+ 1) =
∞∑
s=0

u−s1(s) (1.2)

[Ta,b(u),1
(s)] = 0 (a, b = 1, 2, . . . , n; s = 0, 1, 2, . . .). (1.3)

The Hamiltonian of the model belongs to the Abelian algebra generated by the conserved
charges1(s) [4] and thereby commutes with the Yangian action.

In the scalar case(n = 1) the YangianY (gl1) coincides with its centre and is just the
algebra of the conserved charges in the Calogero–Sutherland model. It is known [18, 19] that
in this case the joint spectrum of the conserved charges is simple, and that the operators1(s)

are self-adjoint with respect to the scalar product relevant for the computation of quantities
such as correlation functions. Hence the orthogonal eigenbasis ofHSCSM (n = 1) is defined
uniquely up to normalizations of eigenvectors as the eigenbasis of the Abelian algebra
generated by the conserved charges1(s).

In the situation when the spin is non-trivial(n > 2) the spectrum of the quantum
determinant is not simple and thus the higher conserved charges alone are not sufficient
to specify an orthogonal eigenbasis. To give such a specification, in this paper we use
a maximal Abelian sub-algebra ofY (gln) denoted byA(gln) and known as the Yangian
Gelfand–Zetlin algebra. This algebra includes the centre of the Yangian as a sub-algebra.
The algebraA(gln) was first studied by Cherednik [5] and subsequently by Nazarov and
Tarasov [22, 23]. It is defined as the sub-algebra inY (gln) generated by all the centres in
the chain of algebras

Y (gl1) ⊂ Y (gl2) ⊂ · · · ⊂ Y (gln) (1.4)

whereY (glm−1) is realized insideY (glm) as the sub-algebra generated by the entries of the
sub-matrix‖Ta,b(u)‖16a,b6m−1.

The generators of the Abelian algebraA(gln) which appear in the SCSM possess the
following two crucial properties:
• They are self-adjoint with respect to the relevant scalar product (defined in section 2).
• They are simultaneously diagonalizable and their joint spectrum is simple.
From these two properties it follows that, since the spin Calogero–Sutherland

Hamiltonian belongs to the algebraA(gln), the eigenbasis of the algebraA(gln) is an
orthogonal eigenbasis of the Hamiltonian.

Construction of this eigenbasis is the first main problem that we address in this paper.
This construction is carried out in two steps. First, we describe the decomposition of the
space of states in the model into irreducible sub-representations of the Yangian action and
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point out the Yangian highest-weight vector in each of the irreducible components. These
highest-weight vectors are expressed in terms of the non-symmetric Jack polynomials.

In [23] Nazarov and Tarasov gave construction of canonical bases, called Yangian
Gelfand–Zetlin bases, for a wide class of Yangian representations which included all
representations which appear as irreducible components of the Yangian action in the SCSM.
The Yangian Gelfand–Zetlin base was first considered by Cherednik in [5] and is defined
as the base where the action of the Abelian algebraA(gln) is diagonal. It includes the
highest-weight vector and ‘descendants’ which are obtained by acting on the highest-weight
vector with appropriate creation operators described explicitly in [23].

Once we have found the irreducible Yangian decomposition of the space of states and
have identified the highest-weight vectors, the results of [5, 23] can immediately be applied
to describe the eigenbasis ofA(gln) within each of the irreducible sub-representations and
hence in the entire space of states of the model.

The second main problem which we consider in this paper is computation of the norms
of the eigenvectors. This computation is performed as follows. First, the norms of the
Yangian highest-weight vectors are found by expressing them in terms of the norms of
the non-symmetric Jack polynomials known from [8, 17, 24]. The norm formulae for the
non-symmetric Jack polynomials are essential in this computation. The norm of the highest-
weight vector is equal to the norm of a certain non-symmetric Jack polynomial multiplied
by a non-trivial coefficient. The norms of the ‘descendants’ which constitute the rest of the
Yangian Gelfand–Zetlin base are computed recursively from the norm of the highest-weight
vector by using properties of the creation operators of [23].

The approach that we use in the present paper to construct the orthogonal eigenbasis
and compute normalizations of the eigenvectors is by no means the only possible one. In
this paper we consider the wavefunctions of the model as having both a coordinate and spin
part so that a complete wavefunction is either totally symmetric or totally asymmetric. In
this framework the Yangian symmetry and the associated Gelfand–Zetlin bases are the most
natural to work with.

Another, equivalent, framework is provided by the polynomial presentation for the
SCSM [15, 12, 3] which amounts to considering the Hamiltonian of the model as an
operator which acts only on the coordinate part of the wavefunction. In this approach
the spin part of the wavefunction does not appear explicitly but can always be recovered
from the requirement that the complete wavefunction is to be totally symmetric or
asymmetric. Polynomial eigenfunctions of the Hamiltonian are then obtained as certain
linear combinations of non-symmetric Jack polynomials. These eigenfunctions exhibit
rather complicated symmetry properties under permutation of variables and are called Jack
polynomials with prescribed symmetry [3].

One can consider the problem of constructing an orthogonal eigenbasis of the model
in terms of these polynomials and the problem of computing norms of the eigenvectors.
The former problem was solved in [3]. The norms have not been computed so far in
full generality (see however [12] for special cases and conjectures). It is clear that these
norms are linear combinations of the known norms for the non-symmetric Jack polynomials
[8, 17, 24], however, the problem of computing coefficients of these linear combinations
seems to be technically rather complicated.

Now let us describe the contents of this paper. In section 2 we recall the definition of
the SCSM. In section 3 the necessary background information on the Yangian and Yangian
Gelfand–Zetlin bases is reviewed. The contents of this section largely follow the work of
[23]. In section 4 we discuss properties of Yangian action in the SCSM. In section 5 the
irreducible Yangian decomposition of the space of states is given. The main results in this



3688 K Takemura and D Uglov

section are theorems 1 and 2. Section 6 contains derivation of the norm formulae for the
Yangian highest-weight vectors. The main result here is proposition 12. In section 7 we
give expressions for the ‘descendants’ of the highest-weight vectors. Proposition 14 gives
formulae for their norms. The appendix contains proofs of some of the statements in the
main text.

2. Definition of the model

In this section we will review the definition and a few known facts about the SCSM. In
doing so we will closely follow the work of [4] where this model was introduced and
extensively studied for the first time under the name of the dynamical model with long-
range interaction. We would like to note, that the model which we define below is the
gauge-transformed version of (1.1) [4].

2.1. The Hilbert space of states in the gauge-transformed SCSM

The space of states of the gauge-transformed SCSM [4] is a subspace in the tensor product

H := C[z±1
1 , z±1

2 , . . . , z±1
N ] ⊗ (⊗NCn). (2.1)

We fix the base{vε}ε=1,...,n in Cn and define in⊗NCn the Hermitian (sesquilinear) scalar
product〈· , ·〉s by requiring pure tensors to be orthonormal:

〈vε1 ⊗ vε2 ⊗ · · · ⊗ vεN , vτ1 ⊗ vτ2 ⊗ · · · ⊗ vτN 〉s :=
N∏
i=1

δεi ,τi (εi, τi = 1, 2, . . . , n). (2.2)

In C[z±1
1 , z±1

2 , . . . , z±1
N ] we define the Hermitian scalar product〈· , ·〉c which depends on the

parameterα ∈ R>0. For f (z1, z2, . . . , zN), g(z1, z2, . . . , zN) ∈ C[z±1
1 , z±1

2 , . . . , z±1
N ] set

〈f , g〉c := 1

N !

( N∏
i=1

∮
|wi |=1

dwi
2π
√−1wi

)

×
(∏
i 6=j

1− wi
wj

)1
α

f (w1, w2, . . . , wN)g(w1, w2, . . . , wN) (2.3)

where the integration over each of the complex variableswi is taken along the unit circle
in the complex plane. The Hermitian scalar product〈· , ·〉 in the spaceH is defined as the
composition of the scalar products (2.2) and (2.3). Forf, g ∈ C[z±1

1 , z±1
2 , . . . , z±1

N ] andu, v
∈ ⊗NCn put

〈f ⊗ u , g ⊗ v〉 := 〈f , g〉c〈u , v〉s (2.4)

and extend the〈· , ·〉 on the entire spaceH by requiring it to be sesquilinear.
The symmetric groupSN acts in theH. For

σ =
(

1 2 · · · N

σ(1) σ (2) · · · σ(N)

)
∈ SN

there are two right actionsKσ andPσ defined in the base{zm1
1 z

m2
2 · · · zmNN ⊗vε1⊗vε2⊗· · ·⊗vεN }

(mi ∈ Z, 16 εi 6 n) of the spaceH by

Kσ

Pσ

}
z
m1
1 . . . z

mN
N ⊗ vε1 ⊗ · · · ⊗ vεN =

{
z
mσ(1)
1 . . . z

mσ(N)
N ⊗ vε1 ⊗ · · · ⊗ vεN

z
m1
1 . . . z

mN
N ⊗ vεσ(1) ⊗ · · · ⊗ vεσ(N) .

(2.5)
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For the transposition(i, j) ∈ SN we will use the notations

K(i,j) ≡ Ki,j and P(i,j) ≡ Pi,j . (2.6)

The operatorsKi,j andPi,j are easily seen to be self-adjoint and unitary with respect to the
scalar product (2.4).

The SCSM can be defined in two versions—fermionic and bosonic [4]. Throughout
this paper we will distinguish these versions by the sign of the parameterκ setting
κ = −(resp. κ = +) for the fermionic (resp. bosonic) case. The space of statesH(κ)
in the gauge-transformed SCSM is then defined as follows:

H(κ) :=
N−1⋂
i=1

Ker(Ki,i+1Pi,i+1− κ1) ⊂ H. (2.7)

Or, equivalently, as the image of the total asymmetrization or symmetrization operator:

A
(κ)
N :=

∑
σ∈SN

(κ)l(σ )KσPσ . (2.8)

The subspaceH(κ) inherits the scalar product(2.4) from the spaceH. We will use the
notation〈· , ·〉(κ) for this scalar product.

2.2. The Hamiltonian of the SCSM

The gauge-transformed SCSM Hamiltonian is defined through the Cherednik–Dunkl
operators [10, 6, 4]:

di := α zi ∂
∂zi
− i +

∑
i<j

zj

zj − zi (Ki,j − 1)−
∑
i>j

zi

zi − zj (Ki,j − 1) (i = 1, 2, . . . , N)

(2.9)

which satisfy the relations of the degenerate affine Hecke algebra:

Ki,i+1di − di+1Ki,i+1 = 1 (2.10)

[dj ,Ki,i+1] = 0 (j 6= i, i + 1) (2.11)

[di, dj ] = 0. (2.12)

We will consider the Cherednik–Dunkl operators as acting either inC[z±1
1 , z±1

2 , . . . , z±1
N ] or

in the first factor inH = C[z±1
1 , z±1

2 , . . . , z±1
N ] ⊗ (⊗NCn) by expressions (2.9) and trivially

in the second factor:(⊗NCn) without always giving exact specification since this is unlikely
to cause any confusion.

Relations (2.10)–(2.12) imply, in particular, that symmetric polynomials in
d1, d2, . . . , dN leave the subspacesH(±) invariant [4]. In terms of the Cherednik–Dunkl
operators the gauge-transformed HamiltonianH(κ) ∈ End(H(κ)) of the SCSM is

H(κ) :=
N∑
i=1

{(
α zi

∂

∂zi

)2

+ (2i −N − 1)α zi
∂

∂zi

}

+2α
∑
i<j

{
zi

zi − zj

(
zi
∂

∂zi
− zj ∂

∂zj

)
+ zizj

(zi − zj )(zj − zi)(−κPi,j + 1)

}

+ 1

12
N(N2− 1) =

N∑
i=1

(
di − N + 1

2

)2

−N(N + 1)2. (2.13)
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Here to show the equality one has to use the relation

Ki,jf = κPi,j f (2.14)

which holds for anyf ∈ H(κ) due to definition (2.7).
By a straightforward calculation one checks that the Cherednik–Dunkl operators are

self-adjoint with respect to the scalar product (2.3) and hence the HamiltonianH(κ) is
self-adjoint with respect to the scalar product〈· , ·〉(κ). The physical HamiltonianH(κ)

SCSM is
obtained from theH(κ) by performing the gauge transformation [4]:

H
(κ)

SCSM= V
1
α H (κ)V −

1
α =

N∑
i=1

(
αzi

∂

∂zi

)2

+
∑
i 6=j

zizj

(zi − zj )(zj − zi)(−καPi,j + 1) (2.15)

where

V =
( N∏
i=1

zi

)1−N
2 ∏

i<j

zi − zj . (2.16)

The HamiltonianH(κ)

SCSM is identified up to the overall factorα2 with the Hamiltonian (1.1)
whereβ = −κ1/α and zi = exp(

√−1xi). TheH(κ)

SCSM is self-adjoint with respect to the
physical scalar product which is obtained from (2.4) by formally puttingα = ∞.

3. YangianY (gln) and the Yangian Gelfand–Zetlin bases

In this section we summarize properties of the YangianY (gln) which are used in this
paper. The main attention is given to the Gelfand–Zetlin algebra and the canonical Yangian
Gelfand–Zetlin bases in certain irreducible Yangian modules. The contents of this section,
with the exception of the lemma 1 can be found in the works of [22, 23].

3.1. The definition of the YangianY (gln) and the Gelfand–Zetlin algebra

The YangianY (gln) is a unital associative algebra generated by the elements 1 andT
(s)
a,b

wherea, b = 1, . . . , n ands = 1, 2, . . . that are subject to the following relations:

[T (r)a,b , T
(s+1)
c,d ] − [T (r+1)

a,b , T
(s)
c,d ] = T (r)c,b T

(s)
a,d − T (s)c,b T

(r)
a,d (r, s = 0, 1, 2, . . .) (3.1)

whereT (0)a,b := δa,b1.
Introducing the formal Taylor series inu−1

Ta,b(u) = δa,b + T (1)a,b u
−1+ T (2)a,b u

−2+ · · · (3.2)

define
k

T (u)(k = 1, 2) as follows:

k

T (u) =
n∑

a,b=1

E
(k)
a,b ⊗ Ta,b(u) ∈ End(Cn)⊗ End(Cn)⊗ Y (gln)[[u

−1]] . (3.3)

HereE(k)a,b are the standard matrix units that are acting in thekth tensor factorCn. If we put

R(u, v) = id+ 1

u− v
n∑

a,b=1

E
(1)
a,b ⊗ E(2)b,a (3.4)

then the defining relations ofY (gln) are

R(u, v)
1
T (u)

2
T (v) =

2
T (v)

1
T (u)R(u, v). (3.5)
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Let i = (i1, . . . , im) andj = (j1, . . . , jm) be two sequences of indices such that

16 i1 < · · · < im 6 n and 16 j1 < · · · < jm 6 n. (3.6)

Let Sm be the symmetric group of degreem. Define

Qij(u) =
∑
σ∈Sm

(−1)l(σ )Ti1,jσ(1) (u)Ti2,jσ(2) (u− 1) · · · Tim,jσ(m) (u−m+ 1) (3.7)

and

A0(u) = 1 Am(u) = Qii(u) (m = 1, . . . , n) (3.8)

Bm(u) = Qij(u) Cm(u) = Qji(u) Dm(u) = Qjj(u) (m = 1, . . . , n− 1)

(3.9)

wherei = (1, . . . , m) andj = (1, . . . , m− 1, m+ 1).
The following propositions can be found in [22].

Proposition 1 ([22]). (a) The coefficients ofAn(u) belong to the centre of the algebraY (gln).
(b) All the coefficients ofA1(u), . . . , An(u) pairwise commute.

Proposition 2 ([22]). The following commutation relations hold inY (gln):

[Am(u), Bl(v)] = 0 if l 6= m (3.10)

[Cm(u), Bl(v)] = 0 if l 6= m (3.11)

[Bm(u), Bl(v)] = 0 if |l −m| 6= 1 (3.12)

(u− v)[Am(u), Bm(v)] = Bm(u)Am(v)− Bm(v)Am(u) (3.13)

(u− v)[Cm(u), Bm(v)] = Dm(u)Am(v)−Dm(v)Am(u). (3.14)

Proposition 3 ([22]). The following relation holds inY (gln):

Cm(u)Bm(u− 1) = Dm(u)Am(u− 1)− Am+1(u)Am−1(u− 1). (3.15)

By relations (3.14), (3.15) we obtain

Dm(u)Am(u+ 1) = Am+1(u+ 1)Am−1(u)− Bm(u)Cm(u+ 1). (3.16)

By proposition 1, the coefficientsA(s)m of the seriesA1(u), . . . , An(u):

Am(u) =
∑
s>0

u−sA(s)m (m = 1, 2, . . . , n) (3.17)

generate the commutative sub-algebra inY (gln). This algebra is called Gelfand–Zetlin
algebra and is denoted byA(gln).

The following lemma will be used in the next section.

Lemma 1.Let ∗ : Y (gln)→ Y (gln) be the algebra anti-involution such that

T
(1)
a,b

∗ = T (1)b,a T
(2)
a,b

∗ = T (2)b,a and A(t)n
∗ = A(t)n (t = 0, 1, 2, . . .). (3.18)

Then

T
(s)∗
a,b = T (s)b,a for all s = 0, 1, 2, . . . . (3.19)
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Proof. The lemma is proven by induction ins. SupposeT (r)a,b

∗ = T (r)b,a hold for all r 6 s.
Then the relations of the Yangian (3.1) and

T
(1)
a,b

∗ = T (1)b,a T
(2)
a,b

∗ = T (2)b,a (3.20)

entail

T
(s+1)
a,b

∗ = T (s+1)
b,a (a 6= b) and (T (s+1)

a,a − T (s+1)
b,b )∗ = T (s+1)

a,a − T (s+1)
b,b . (3.21)

And the condition on the quantum determinant:

A(t)n
∗ = A(t)n (t = 0, 1, 2, . . .) (3.22)

gives

(T
(s+1)

1,1 + T (s+1)
2,2 + · · · + T (s+1)

n,n )∗ = T (s+1)
1,1 + T (s+1)

2,2 + · · · + T (s+1)
n,n . (3.23)

This completes the proof of the induction step. Taking conditions (3.20) as the induction
base we obtain the statement of the lemma. �

3.2. Yangian Gelfand–Zetlin bases

Let V be an irreducible finite-dimensionalgln-module andEa,b be the generators ofgln.
Denote byvλ the highest-weight vector inV :

Ea,avλ = λavλ Ea,bvλ = 0 a < b. (3.24)

Then each differenceλa − λa+1 is a non-negative integer. We assume that eachλa is also
an integer. Denote byTλ the set of all arrays,3, with integral entries of the form

λn,1λn,2 . . . . . . . . . . . . . . . λn,n
λn−1,1 . . . . . . λn−1,n−1

. . . . . . . . .

λ2,1λ2,2

λ1,1

(3.25)

whereλn,i = λi andλi > λm,i for all i andm. The array,3, is called a Gelfand–Zetlin
scheme if

λm,i > λm−1,i > λm,i+1 (3.26)

for all possiblem and i. Denote bySλ the subset inTλ consisting of the Gelfand–Zetlin
schemes.

There is a canonical decomposition of the spaceV into the direct sum of one-dimensional
subspaces associated with the chain of sub-algebras

gl1 ⊂ gl2 ⊂ · · · ⊂ gln. (3.27)

These subspaces are parametrized by the elements3 ∈ Sλ. The subspaceV3 ⊂ V

corresponding to3 ∈ Sλ is contained in an irreducibleglm-submodule of the highest
weight (λm,1, λm,2, . . . , λm,m) for eachm = n − 1, n − 2, . . . ,1. These conditions define
V3 uniquely. [13].

Let us recall some facts about representations of the YangianY (gln).
If we setu′ = u + h, v′ = v + h(h ∈ C), relations (3.5) are also satisfied for(u′, v′).

Thus the map

Ta,b(u) 7→ Ta,b(u+ h) (3.28)
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defines an automorphism of the algebraY (gln). So if there is a representation,V , of
Y (gln), we can construct another representation ofY (gln) by the pullback through this
automorphism.

We can regard the representation of the Lie algebragln as the representation ofY (gln).
This transpires due to the existence of the homomorphismπn from Y (gln) to U(gln): the
universal enveloping algebra ofgln:

πn : Ta,b(u) 7→ δa,b + Eb,au−1. (3.29)

Let Vλ be the irreduciblegln-module whose highest weight isλ = (λ1, λ2, . . . , λn).
We denote byVλ(h) the Y (gln)-module obtained fromVλ by the pullback through this
homomorphism and the automorphism (3.28).

The YangianY (gln) has the coproduct1 : Y (gln) → Y (gln) ⊗ Y (gln). It is given as
follows:

1(Ta,b(u)) =
n∑
c=1

Ta,c(u)⊗ Tc,b(u). (3.30)

So if there are representationsVi(i = 1, . . . ,M) of the YangianY (gln), we can construct
the representationV1⊗ V2⊗ · · · ⊗ VM of Y (gln):

Ta,b(u)(v1⊗ v2⊗ · · · ⊗ vM) = 1(n−1) ◦ · · · ◦1(2)(Ta,b(u))(v1⊗ v2⊗ · · · ⊗ vM)
=

∑
k1...kM−1

Ta,k1(u)v1⊗ Tk1,k2(u)v2⊗ · · · ⊗ TkM−1,b(u)vM. (3.31)

From now on we consider the following representation of the YangianY (gln):

W = Vλ(1) (h(1))⊗ Vλ(2) (h(2))⊗ · · · ⊗ Vλ(M) (h(M)) (3.32)

where we assume thath(r) − h(s) 6∈ Z for all r 6= s.
Let us setρ0(u) = 1 and form = 1, . . . , n let us define

ρm(u) =
M∏
s=1

m∏
i=1

(u− i + 1+ h(s)) (3.33)

and

am(u) = ρm(u)Am(u) m = 0, . . . , n (3.34)

bm(u) = ρm(u)Bm(u) m = 1, . . . , n− 1 (3.35)

cm(u) = ρm(u)Cm(u) m = 1, . . . , n− 1 (3.36)

dm(u) = ρm(u)Dm(u) m = 1, . . . , n− 1. (3.37)

Then am(u), bm(u), cm(u) and dm(u) are polynomials inu, and due to proposition 2 and
(3.16), they satisfy

[am(u), bl(v)] = 0 if l 6= m (3.38)

[cm(u), bl(v)] = 0 if l 6= m (3.39)

[bm(u), bl(v)] = 0 if |l −m| 6= 1 (3.40)

(u− v)[am(u), bm(v)] = bm(u)am(v)− bm(v)am(u) (3.41)

(u− v)[cm(u), bm(v)] = dm(u)am(v)− dm(v)am(u) (3.42)

dm(u)am(u+ 1) = am+1(u+ 1)am−1(u)− bm(u)cm(u+ 1). (3.43)

Let us fix a set of Gelfand–Zetlin schemes

3(s) = (λm,i |16 i 6 m 6 n) ∈ Tλ(s) (s = 1, . . . ,M) (3.44)
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and define the following polynomials form = 0, . . . , n.

$m,3(1),...,3(M) (u) =
M∏
s=1

m∏
i=1

(u+ λ(s)m,i − i + 1+ h(s)). (3.45)

Note that all the zeros of themth polynomial

ν
(s)
m,i = i − λ(s)m,i − 1− h(s) (3.46)

are pairwise distinct due to our assumption on the parametersh(1), . . . , h(M).
For the pairs(m,m′)(16 m′ 6 m 6 n), we introduce the ordering,

(m,m′) ≺ (l, l′)⇔ m′ < l′ or (m′ = l′ andm > l). (3.47)

Let vhwv ∈ W be the vector, which is the tensor product of the highest-weight vectorsv
(s)

hwv
of the Lie algebragln (s = 1, . . . ,M). Then consider the following vector inW

v3(1),...,3(M) =
→∏

(m,m′)

( ∏
(s,t)

16t6λ(s)
n,m′−λ

(s)

m,m′

bm(ν
(s)
m,m′ − t)

)
vhwv. (3.48)

Here for each fixedm the elementsbm(ν
(s)
m,m′ − t) ∈ End(W) commute because of relation

(3.40).
Then the following propositions are satisfied (see [23]).

Proposition 4 ([23]). For everym = 1, . . . , n we have the equality

am(u)v3(1),...,3(M) = $m,3(1),...,3(M) (u)v3(1),...,3(M) . (3.49)

Proposition 5 ([23]). If 3(r) /∈ Sλ(r) for somer ∈ {1, . . . ,M}, thenv3(1),...,3(M) = 0.

Proposition 6 ([23]). If 3(r) ∈ Sλ(r) for everyr ∈ {1, . . . ,M}, thenv3(1),...,3(M) 6= 0.

Proposition 7 ([23]).Y (gln)-moduleW is irreducible ifh(r) − h(s) /∈ Z for all r 6= s.
By propositions 4 and 6 and the fact that if(3(1), . . . , 3(M)) 6= (3̃(1), . . . , 3̃(M))

(∀r,3(r), 3̃(r) ∈ Sλ(r) ) then ∃m st $m,3(1),...,3(M) (u) 6= $m,3̃(1),...,3̃(M) (u), one can show the
following.

Proposition 8.v3(1),...,3(M) (3(r) ∈ Sλ(r) for everyr ∈ {1, . . . ,M}) form a base ofW .

4. Yangian in the spin Calogero–Sutherland model

In this section we recall the definition of the Yangian action in the SCSM [4] and establish
some properties of this action—in particular the self-adjointness of the operators giving the
action of the Gelfand–Zetlin algebra (proposition 10).

Following [4] for κ = ± define the monodromy operator̂T (κ)0 (u) ∈ End(Cn) ⊗
End(H)[[u−1]] by

T̂
(κ)

0 (u) =
n∑

a,b=1

Ea,b ⊗ T̂ (κ)a,b (u) :=
(

1+ P0,1

u− κd1

)(
1+ P0,2

u− κd2

)
· · ·
(

1+ P0,N

u− κdN

)
(4.1)

theP0,i in this definition is the permutation operator of the zeroth andith tensor factorsCn
in the tensor product

Cn
0
⊗ C[z±1

1 , z±1
2 , . . . , z±1

N ] ⊗ Cn
1
⊗ Cn

2
⊗ · · · ⊗ Cn

N
= Cn

0
⊗H. (4.2)
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TheEa,b ∈ End(Cn) is the standard matrix unit in the basis{vε} introduced before definition
(2.2). The operatorŝT (κ),(s)a,b ∈ End(H) obtained by expanding the monodromy matrix

T̂
(κ)
a,b (u):

T̂
(κ)
a,b (u) = δa,b1+

∑
s>1

u−s T̂ (κ),(s)a,b (4.3)

satisfy the defining relations (3.1) of theY (gln). By using the relations of the degenerate
affine Hecke algebra (2.10)–(2.12) one can show [4] that theT̂

(κ),(s)
a,b leave the subspace

H(κ) invariant. We will set

T
(κ)
a,b (u) := T̂ (κ)a,b (u)|H(κ) ∈ End(H(κ))[[u−1]] (a, b = 1, 2, . . . , n). (4.4)

Denote the generating series which give the action of the Gelfand–Zetlin
algebra in the Yangian representation defined by the monodromy matrix (4.4) by
A
(κ)

1 (u), A
(κ)

2 (u), . . . , A(κ)n (u). TheA(κ)n (u) is just the quantum determinant of theT (κ)a,b (u).
Hence

[A(κ)n (u), T
(κ)
a,b (v)] = 0 (a, b = 1, 2, . . . , n). (4.5)

The explicit expression for the quantum determinant [4]:

A(κ)n (u) =
N∏
i=1

u+ 1− κdi
u− κdi (4.6)

shows that the SCSM Hamiltonian (2.13) is an element in the centre of the Yangian action
and hence is an element in the Gelfand–Zetlin algebra.

Denote byO† the adjoint of an operatorO ∈ End(H(κ)) with respect to the scalar
product 〈· , ·〉(κ) defined in section 2. ForO(u) = ∑

s>0 u
−sO(s) ∈ End(H(κ))[[u−1]] we

will write O(u)† :=∑s>0 u
−sO(s)†.

Proposition 9.

T
(κ)
a,b (u)

† = T (κ)b,a (u) (κ = −,+). (4.7)

Proof. By using lemma 1 to prove the proposition, it is sufficient to show that

T
(κ),(1)
a,b

† = T (κ),(1)b,a T
(κ),(2)
a,b

† = T (κ),(2)b,a (4.8)

and

A(κ)n (u)
† = A(κ)n (u). (4.9)

By using definition (4.4) and the same notation regarding the subscript 0 as in (4.1) we can
write

T
(κ),(1)

0 =
N∑
i=1

P0,i

T
(κ),(2)

0 =
( N∑
i=1

κdiP0,i +
∑

16i<j6N
P0,iP0,j

)∣∣∣∣
H(κ)
=
( N∑
i=1

κdiP0,i +
∑

16i<j6N
κKi,jP0,j

)∣∣∣∣
H(κ)
.

The Cherednik–Dunkl operatorsdi and the permutation operatorsKi,j (i, j = 1, 2, . . . , N)
are self-adjoint with respect to the scalar product (2.3). On the other hand, for any
x, y ∈ ⊗NCn we have

〈P0,ix , y〉s = 〈x , P 〉t00,iys (4.10)
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where superscriptt0 stands for the matrix transposition in the auxiliary spaceCn (4.1).
Using the definitions of the scalar products (2.4) and〈· , ·〉(κ) we obtain (4.8).

Then (4.9) follows from the explicit expression for the quantum determinant (4.6) and
the self-adjointness of the Cherednik–Dunkl operators with respect to the scalar product
(2.4). �

By using this proposition we can now establish the main result of this section.

Proposition 10.

A(κ)m (u)
† = A(κ)m (u) B(κ)m (u)

† = C(κ)m (u) C(κ)m (u)
† = B(κ)m (u) (κ = −,+).

(4.11)

Proof. Since in the following proof it is immaterial whether we are dealing with the
fermionic or bosonic case, we will suppress the superscripts(κ).

In [21], the proof of the following relations can be found:

Ti1,,j1(u)Ti2,j2(u− 1) · · · Tim,jm(u−m+ 1)E(1)i1,j1
E
(2)
i2,j2

. . . E
(m)
im,jm

(Hm ⊗ 1)

= (Hm ⊗ 1)E(1)i1,j1
E
(2)
i2,j2

. . . E
(m)
im,jm

Tim,jm(u−m+ 1) · · · Ti2,j2(u− 1)Ti1,j1(u).

(4.12)

Relations (4.12) are satisfied in End(Cn)⊗m ⊗ Y (gln)[[u−1]], andHm ∈ End(Cn)⊗m is the
asymmetrization map. By comparing the coefficient ofE

(1)
i1,j1
E
(2)
i2,j2

. . . E
(m)
im,jm

, we obtain∑
σ∈Sm

(−1)l(σ )Ti1,jσ(1) (u)Ti2,jσ(2) (u− 1) · · · Tim,jσ(m) (u−m+ 1)

=
∑
σ∈Sm

(−1)l(σ )Tiσ(m),jm(u−m+ 1) · · · Tiσ(2),j2(u− 1)Tiσ(1),j1(u). (4.13)

Then if we take the adjoint, we have( ∑
σ∈Sm

(−1)l(σ )Ti1,jσ(1) (u)Ti2,jσ(2) (u− 1) · · · Tim,jσ(m) (u−m+ 1)

)†
=

∑
σ∈Sm

(−1)l(σ )Tj1,iσ (1) (u)Tj2,iσ (2) (u− 1) · · · Tjm,iσ(m) (u−m+ 1). (4.14)

If we put (i1, . . . im) = (1, . . . , m), (j1, . . . jm) = (1, . . . , m), we obtain Am(u)† =
Am(u), and if we put (i1, . . . im) = (1, . . . , m), (j1, . . . jm) = (1, . . . , m − 1, m +
1)(resp.(i1, . . . im) = (1, . . . , m−1, m+1), (j1, . . . jm) = (1, . . . , m)), we obtainBm(u)† =
Cm(u)(resp. Cm(u)† = Bm(u)). �

In section 7 we will see that the operator coefficients generated byA
(κ)

1 (u), . . . , A(κ)n (u)

are simultaneously diagonalizable inH(κ), and that their joint spectrum is multiplicity free.
SinceA(κ)1 (u), . . . , A(κ)n (u) are self-adjoint this implies that their common eigenvectors are
mutually orthogonal with respect to the scalar product〈· , ·〉(κ). Our main problem in this
paper is to describe these eigenvectors and to compute their norms.

5. Decomposition of the space of states into irreducible Yangian submodules

In this section we construct the decomposition of the space of states of SCSM into irreducible
submodules of the Yangian action. The procedure we follow is the one suggested in [4],
it is based on the diagonalization of the Cherednik–Dunkl operators. The eigenvectors of
the Cherednik–Dunkl operators, known as non-symmetric Jack polynomials, are reviewed
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in the section 5.1. In section 5.2 we describe the decomposition of the space of states
H(−) in the fermionic model, the main result here is theorem 1. In section 5.3 we give the
decomposition in the bosonic case.

5.1. Non-symmetric Jack polynomials

In this section we consider the Cherednik–Dunkl operators (2.9) as acting in
C[z±1

1 , z±1
2 , . . . , z±1

N ]. For α > 0 the Cherednik–Dunkl operators are simultaneously
diagonalizable. Their common eigenvectors form a base inC[z±1

1 , z±1
2 , . . . , z±1

N ] and are
sometimes called non-symmetric Jack polynomials. Here we will review some of the
properties of these polynomials.

First we describe the labelling of the eigenvectors which will be convenient in the proofs
of the statements we are going to make later. LetMN := {(m1, m2, . . . , mN) ∈ ZN |m1 >
m2 > . . . > mN } be the set of partitions which may have negative parts. There is a right
action of the symmetric groupSN in ZN . For

σ =
(

1 2 · · · N

σ(1) σ (2) · · · σ(N)

)
∈ SN

and(n1, n2, . . . , nN) ∈ ZN it is defined by

σ(n1, n2, . . . , nN) = (nσ(1), nσ(2), . . . , nσ(N)). (5.1)

For anm ∈MN we define the subsetSm in SN by

σ ∈ Sm (5.2)

iff for all 1 6 i 6 Nσ(i) = #{j 6 i|mσ(j) > mσ(i)} + #{j > i|mσ(j) > mσ(i)}. Let Sm
N ⊂

SN be the subgroup leavingm invariant. ThenSm intersects each of the right cosets of
Sm
N in SN at precisely one element, and the correspondence betweenSm and the set of all

distinct rearrangements ofm given by

σ ∈ Sm→ σm = (mσ(1), mσ(2), . . . , mσ(N)) (5.3)

is bijective.
Some of the properties of the setSm are summarized as follows:

if σ ∈ Sm thenσ(i, i + 1) ∈ Sm iff mσ(i) 6= mσ(i+1). (5.4)

if σ ∈ Sm then l(σ )

(
:=
∑
i<j

θ(σ (i) > σ(j))

)
=
∑
i<j

θ(mσ(i) < mσ(j)) (5.5)

∀σ ∈ Sm, σ 6= id∃(i, i + 1) such thatmσ(i) < mσ(i+1) and l(σ (i, i + 1)) = l(σ )− 1.

(5.6)

Here in the definition of the lengthl(σ ) we used the conventionθ(x) = 1 if x is true,
θ(x) = 0 if x is false.

In the setSm we introduce the total ordering by setting

σ � σ ′ (5.7)

iff the last non-zero element in(mσ(1) −mσ ′(1), mσ(2) −mσ ′(2), . . . , mσ(N) −mσ ′(N)) is <0.
Notice that the identity inSN is the maximal element inSm in this ordering. Then in the
set of pairs(m, σ )(m ∈MN, σ ∈ Sm) the partial ordering is defined by

(m, σ ) > (m̃, σ̃ ) iff

{
m > m̃ or

m = m̃ σ � σ̃ (5.8)
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wherem > m̃ means thatm is greater thanm̃ in the dominance (natural) ordering inMN

[19].
The eigenvectors8mσ (z) ∈ C[z±1

1 , z±1
2 , . . . , z±1

N ] of the Cherednik–Dunkl operators are
labelled by the pairs(m, σ )(m ∈MN, σ ∈ Sm) and satisfy the following properties:

8mσ (z) = zmσ(1)1 z
mσ(2)
2 · · · zmσ(N)N +

∑
(m̃,σ̃ )<(m,σ )

c(m,σ );(m̃,σ̃ )z
m̃σ̃ (1)
1 z

m̃σ̃(2)
2 · · · zm̃σ̃(N)N (5.9)

di8
m
σ (z) = ξmi (σ )8mσ (z) whereξmi (σ ) := αmσ(i) − σ(i) (i = 1, 2, . . . , N)

(5.10)

Ki,i+18
m
σ (z) = Ami (σ )8mσ (z)+ Bmi (σ )8mσ(i,i+1)(z) (5.11)

where

Ami (σ ) =
1

ξmi (σ )− ξmi+1(σ )

Bmi (σ ) =



(
ξmi (σ )− ξmi+1(σ )

)2− 1(
ξmi (σ )− ξmi+1(σ )

)2 (mσ(i) > mσ(i+1))

0 (mσ(i) = mσ(i+1))

1 (mσ(i) < mσ(i+1)).

(5.12)

Notice that forσ ∈ Sm we haveσ(i + 1) = σ(i)+ 1 whenevermσ(i) = mσ(i+1), and hence
in this case (5.11) and (5.12) give

Ki,i+18
m
σ (z) = 8mσ (z) (mσ(i) = mσ(i+1)). (5.13)

For α > 0, the set ofN eigenvalues(ξm1 (σ ), ξ
m
2 (σ ), . . . , ξ

m
N (σ )) determines the pair

(m, σ ) uniquely. Since the Cherednik–Dunkl operators are self-adjoint with respect to the
scalar product〈· , ·〉c (2.3), this implies that the eigenvectors8mσ (z) are mutually orthogonal:

〈8mσ (z) ,8nκ (z)〉c = δm,nδσ,κ‖8mσ (z)‖2
c . (5.14)

Their norms‖8mσ (z)‖2
c have been computed in [24] and for theq-deformed situation in

[17, 8]. The product formulae for the norms‖8mid (z)‖2
c will be used in section 6 to derive

product formulae for the norms of the Yangian highest-weight vectors.

5.2. Irreducible decomposition of the space of states with respect to the Yangian action.
Fermionic case

In this section we describe the decomposition of the space of states in the fermionic SCSM:
H(−) into irreducible subrepresentations with respect to theY (gln)-action (4.4)(κ = −).

Let Em := ⊕σ∈SmC8mσ (z) (m ∈MN); and let

Fm := (Em ⊗ (⊗NCn)) ∩H(−). (5.15)

Then (5.10) implies that the spaceFm is invariant with respect to the Yangian action defined
by (4.4) withκ = −. And since the polynomials8mσ (z) (m ∈MN, σ ∈ Sm) form a base
in C[z±1

1 , z±1
2 , . . . , z±1

N ] we have

H(−) =
⊕
m∈MN

Fm. (5.16)

Expression (4.6) (κ = −) implies that, unlessFm = ∅, Fm is an eigenspace of the quantum
determinant with the eigenvalue

N∏
i=1

u+ 1+ ξmi (id)
u+ ξmi (id)

(5.17)
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and hence is an eigenspace of the HamiltonianH(−) (2.13).
To describe each of the componentsFm explicitly we need to make several definitions.
Let Wm

(−) ⊂ ⊗NCn (m ∈MN) be defined by

Wm
(−) :=

⋂
16i6Nstmi=mi+1

Ker(Pi,i+1+ 1). (5.18)

Note that dimWm
(−) = 0 unlessm ∈M(n)

N where

M(n)
N := {m ∈MN |#{mk|mk = i} 6 n(i ∈ Z)}. (5.19)

For p ∈ {1, 2, . . . , n} let λ be the highest weight of the fundamentalgln-module:

λ = (1, 1, . . . ,1︸ ︷︷ ︸
p

, 0, 0, . . . ,0︸ ︷︷ ︸
n−p

) (16 p 6 n). (5.20)

For a highest weight of this form andh ∈ C denote the correspondingY (gln)-module
Vλ(h) (see section 3.2) byVp(h). As a linear space theVp(h) is realized as the totally
asymmetrized tensor product ofCn:

Vp(h) = ∩p−1
i=1 Ker(Pi,i+1+ 1) ⊂ ⊗pCn (16 p 6 n) (5.21)

with normalization chosen so that thegln highest-weight vector inVp(h) is

ωp :=
∑
σ∈Sp

(−1)l(σ )vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(p). (5.22)

For anm ∈M(n)
N let M be the number of distinct elements in the sequence

m = (m1, m2, . . . , mN).

And let ps (16 ps 6 n, s = 1, 2, . . . ,M) be the multiplicities of the elements inm:

m1 = m2 = · · · = mp1 > m1+p1 = m2+p1 = · · · = mp2+p1 > · · · > m1+pM−1+···+p2+p1

= m2+pM−1+···+p2+p1 = · · · = mpM+···+p2+p1≡N.
(5.23)

With ξmi := ξmi (id) (5.10) set

h(s)m := ξm1+p1+p2+···+ps−1
(p0 := 0, s = 1, 2, . . . ,M). (5.24)

Then for the linear spaceWm
(−) (5.18) we have

Wm
(−) =

{
Vp1(h

(1)
m )⊗ Vp2(h

(2)
m )⊗ · · · ⊗ VpM (h(M)m ) ⊂ ⊗NCn whenm ∈M(n)

N

∅ whenm 6∈M(n)
N .

(5.25)

Whenm ∈ M(n)
N the Wm

(−) is the Yangian module with the Yangian action defined by
coproduct (3.30).

For anyσ ∈ Sm (5.2) defineŘ(−)(σ ) ∈ End(⊗NCn) by the following recursion relation

Ř(−)(id) := 1 (5.26)

Ř(−)(σ (i, i + 1)) := −Ři,i+1(ξ
m
i (σ )− ξmi+1(σ ))Ř

(−)(σ ) (mσ(i) > mσ(i+1)) (5.27)

where theR-matrix is given by

Ři,i+1(u) := u−1+ Pi,i+1. (5.28)

Due to the property (5.6) of the setSm this recursion relation is sufficient to defineŘ(−)(σ )
for all σ ∈ Sm. The definition ofŘ(−)(σ ) is unambiguous by virtue of the Yang–Baxter
equation satisfied by theR-matrix (5.28).
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Form ∈MN define the mapUm(−) : ⊗NCn→ H by setting forv ∈ ⊗NCn

Um(−)v :=
∑
σ∈Sm

8mσ (z)⊗ Ř(−)(σ )v. (5.29)

Theorem 1.For anym ∈MN we have

Um(−) : Wm
(−) 7→ Fm. (5.30)

And Um(−) is an isomorphism of theY (gln)-modulesWm
(−) andFm.

The proof of this theorem is given in appendix A.
This theorem will allow us to use the results of [23] described in section 3 in order

to construct inFm the eigenbasis of the algebraA(gln) generated by the coefficients of
the seriesA(−)1 (u), A

(−)
2 (u), . . . , A(−)n (u). For now let us notice that from this theorem it

follows that the Yangian highest-weight vector�(−)m in Fm is given by

�(−)m = Um(−)ωm =
∑
σ∈Sm

8mσ (z)⊗ Ř(−)(σ )ωm (5.31)

where theωm is the highest-weight vector inWm
(−):

ωm := ωp1 ⊗ ωp2 ⊗ · · · ⊗ ωpM . (5.32)

From corollary 3.9 in [23] it follows that the modulesFm are irreducible ifα 6∈ Q
since in this case in (5.25) we haveh(s)m − h(r)m 6∈ Z whens 6= r. By using results of [1] we
can verify, that theFm are irreducible under the weaker condition:α ∈ R \Q60. The key
statements of [1] which are used to come to this conclusion are:
• Vp1(h

(1)) ⊗ Vp2(h
(2)) is irreducible iff the Y (gln)-intertwiner R12 : Vp1(h

(1)) ⊗
Vp2(h

(2))→ Vp2(h
(2))⊗ Vp1(h

(1)) and the inverse intertwinerR21 have no poles;
• Vp1(h

(1)) ⊗ Vp2(h
(2)) ⊗ · · · ⊗ VpM (h(M)) is irreducible iff Vpr (h

(r)) ⊗ Vps (h(s)) is
irreducible for all 16 r < s 6 M.

5.3. Irreducible decomposition of the space of states with respect to the Yangian action.
Bosonic case

The decomposition of the space of states of the bosonic SCSM:H(+) into irreducible sub-
representations with respect to theY (gln)-action (4.4)(κ = +) is carried out along the same
lines as the one for the fermionic case.

Let for m ∈MN theEm be defined as in the previous section; and let

Bm := (Em ⊗ (⊗NCn)) ∩H(+). (5.33)

Then (5.10) implies that the spaceBm is invariant with respect to the Yangian action defined
by (4.4) with κ = +; and since the polynomials8mσ (z) (m ∈MN, σ ∈ Sm) form a base
in C[z±1

1 , z±1
2 , . . . , z±1

N ] we have

H(+) =
⊕
m∈MN

Bm. (5.34)

To describe each of the componentsBm explicitly we make several definitions analogous
to those made in the previous section.

Let Wm
(+) ⊂ ⊗NCn (m ∈MN) be defined by

Wm
(+) :=

⋂
16i6Nstmi=mi+1

Ker(Pi,i+1− 1). (5.35)
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For p = 1, 2, . . . let λ be the followinggln highest weight:

λ = (p, 0, 0, . . . ,0︸ ︷︷ ︸
n−1

). (5.36)

For a highest weight of this form andh ∈ C denote the correspondingY (gln)-module
Vλ(h) (see section 3.2) byV p(h). As a linear space theV p(h) is realized as the totally
symmetrized tensor product ofCn:

V p(h) = ∩p−1
i=1 Ker(Pi,i+1− 1) ⊂ ⊗pCn (p = 1, 2, . . .). (5.37)

We choose normalization so that the highest-weight vector inVp(h) is equal tov⊗p1
As in the fermionic case, for anm ∈MN let M be the number of distinct elements in

the sequencem = (m1, m2, . . . , mN). And letps(s = 1, 2, . . . ,M) be the multiplicities of
the elements in them:

m1 = m2 = · · · = mp1 > m1+p1 = m2+p1 = · · · = mp2+p1 > · · · > m1+pM−1+···+p2+p1

= m2+pM−1+···+p2+p1 = · · · = mpM+···+p2+p1≡N. (5.38)

With ξmi := ξmi (id) (5.10) set

h(s)m := −ξm1+p1+p2+···+ps−1
(p0 := 0, s = 1, 2, . . . ,M). (5.39)

Then for the linear spaceWm
(+) (5.35) we have

Wm
(+) = V p1(h(1)m )⊗ V p2(h(2)m )⊗ · · · ⊗ V pM (h(M)m ) ⊂ ⊗NCn (m ∈M(n)

N ). (5.40)

TheWm
(+) is the Yangian module with the Yangian action defined by coproduct (3.30).

For anyσ ∈ Sm (5.2) defineŘ(+)(σ ) ∈ End(⊗NCn) by the following recursion relation

Ř(+)(id) := 1 (5.41)

Ř(+)(σ (i, i + 1)) := Ři,i+1(−ξmi (σ )+ ξmi+1(σ ))Ř
(+)(σ ) (mσ(i) > mσ(i+1)) (5.42)

where theR-matrix Ři,i+1(u) is given by (5.28).
As in the fermionic case, due to the property (5.6) of the setSm this recursion relation

is sufficient to defineŘ(+)(σ ) for all σ ∈ Sm. The definition ofŘ(+)(σ ) is unambiguous
by virtue of the Yang–Baxter equation satisfied by theR-matrix (5.28).

Form ∈MN define the mapUm(+) : ⊗NCn→ H by setting forv ∈ ⊗NCn

Um(+)v :=
∑
σ∈Sm

8mσ (z)⊗ Ř(+)(σ )v. (5.43)

Theorem 2.For anym ∈MN we have

Um(+) : Wm
(+) 7→ Bm. (5.44)

And Um(+) is an isomorphism of theY (gln)-modulesWm
(+) andBm.

We omit the proof of this theorem since it is a straightforward modification of the proof
of the theorem 1 given in appendix A. From this theorem it follows that the Yangian
highest-weight vector�(+)m in Bm is given by

�(+)m = Um(+)v⊗N1 =
∑
σ∈Sm

8mσ (z)⊗ Ř(+)(σ )v⊗N1 . (5.45)

Theorem 2 will allow us to use the results of [23], summarized in section 3, in order to
construct inBm the eigenbasis of the algebraA(gln) generated by the coefficients of the
seriesA(+)1 (u), A

(+)
2 (u), . . . , A(+)n (u).
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6. Norms of the highest-weight vectors in the irreducible Yangian submodules

6.1. The fermionic case

In this section we will compute the norms〈�(−)m , �(−)m 〉(−) of the highest-weight vectors in

each of the irreducible submodulesFm (m ∈M(n)
N ).

Let us fix anm ∈M(n)
N . In this section and later on we will use the notations (5.23),

(5.24). Let8m(z) := 8mid (z). Consider the vector

A
(−)
N (8m(z)⊗ ωm) (6.1)

whereA
(−)
N is the asymmetrization operator (2.8). Due to (5.11) and the definition of the

spaceFm (5.15) we have

A
(−)
N (8m(z)⊗ ωm) ∈ Fm (6.2)

and comparing thegln-weights of the vector (6.1) with�(−)m we find that these vectors are
proportional:

A
(−)
N (8m(z)⊗ ωm) = c(m)�(−)m (c(m) ∈ R). (6.3)

Now we observe that from the self-adjointness of the elementary permutationsK
†
i,i+1 =

Ki,i+1, P †i,i+1 = Pi,i+1 with respect to the scalar product (2.4) it follows that the
asymmetrization operator is self-adjoint as well:

A
(−)†

N = A
(−)
N . (6.4)

Therefore we can write

〈A(−)
N (8m(z)⊗ ωm) ,A(−)

N (8m(z)⊗ ωm)〉 = N !〈8m(z)⊗ ωm ,A(−)
N (8m(z)⊗ ωm)〉

= N !c(m)〈8m(z)⊗ ωm , �(−)m 〉
and by formula (5.31) and the orthogonality of the polynomials8mσ (z) with respect to the
scalar product (2.3):

〈A(−)
N (8m(z)⊗ ωm) ,A(−)

N (8m(z)⊗ ωm)〉 = c(m)2〈�(−)m , �(−)m 〉(−) (6.5)

= N !c(m)〈ωm , ωm〉s〈8m(z) ,8m(z)〉c. (6.6)

Using (5.32), (5.22) to compute the norm〈ωm , ωm〉s we obtain:

〈�(−)m , �(−)m 〉(−) = N !

( M∏
s=1

ps !

)
1

c(m)
〈8m(z) ,8m(z)〉c. (6.7)

The norms〈8m(z) ,8m(z)〉c are known, and can be found in [24, 8, 17]. For completeness
we will give a derivation of these norms later in this section. For now we will proceed to
compute the coefficientc(m).

Writing

A
(−)
N (8m(z)⊗ ωm) =

∑
σ∈Sm

8mσ (z)⊗ ψσ (ψσ ∈ ⊗NCn) (6.8)

and (5.31)

�(−)m =
∑
σ∈Sm

8mσ (z)⊗ Ř(−)(σ )ωm (6.9)

from (6.3) we obtain

ψσ = c(m)Ř(−)(σ )ωm (σ ∈ Sm). (6.10)
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Let σ̄ ∈ Sm be the unique element of maximal lengthl(σ ) (5.5) in the setSm. This element
corresponds to the antidominant rearrangement of the parts in the partitionm:

mσ̄(1) 6 mσ̄(2) 6 · · · 6 mσ̄(N). (6.11)

We will find the coefficientc(m) from (6.10) by comparing the vectorψσ̄ with Ř(−)(σ̄ )ωm.
First we compute theψσ̄ . Let Sm

N ⊂ SN be the subgroup preserving the partitionm.
Then

A
(−)
N (8m(z)⊗ ωm) =

∑
σ∈Sm

(−1)l(σ )KσPσ
∑
τ∈Sm

N

(−1)l(τ )KτPτ8
m(z)⊗ ωm (6.12)

and from (5.13), (5.32), (5.22)

A
(−)
N (8m(z)⊗ ωm) =

( M∏
s=1

ps !

) ∑
σ∈Sm

(−1)l(σ )KσPσ8
m(z)⊗ ωm. (6.13)

Lemma 2.For any elementσ ∈ Sm we have

Kσ8
m(z) = κm(σ )8mσ (z)+

∑
σ ′∈Smstl(σ ′)<l(σ )

νm(σ, σ ′)8mσ ′ (z) (6.14)

whereνm(σ, σ ′), κm(σ ) ∈ R and (5.12)

κm(σ (i, i + 1)) = Bmi (σ )κm(σ ) (mσ(i) > mσ(i+1)). (6.15)

Proof. We prove the lemma by induction in the length of elements inSm. For σ = id the
(6.14) trivially holds withκm(id) = 1. Fix a σ ∈ Sm and assume that (6.14) is true for
all elements of lengths less or equal tol(σ )− 1. Then by the property (5.6),(i, i + 1) and
σ̃ ∈ Sm exist such thatσ = σ̃ (i, i + 1), mσ̃(i) > mσ̃(i+1) and l(σ̃ ) = l(σ )− 1. By writing

Kσ8
m(z) = Ki,i+1Kσ̃8

m(z) (6.16)

by the inductive assumption and (5.11) we obtain the desired statement. �
Since theσ̄ is the element of maximal length inSm from this lemma and (6.13) we

find

ψσ̄ = (−1)l(σ̄ )
( M∏
s=1

ps !

)
κm(σ̄ )Pσ̄ωm = (−1)l(σ̄ )

( M∏
s=1

ps !

)
κm(σ̄ )ωm (6.17)

where

ωm = Pσ̄ωp1 ⊗ ωp2 ⊗ · · · ⊗ ωpM = ωpM ⊗ ωpM−1 ⊗ · · · ⊗ ωp1. (6.18)

Now solving the recursion relation (6.15) with the initial conditionκm(id) = 1 we obtain

κm(σ̄ ) =
∏

16i<j6N
mi>mj

(ξmi − ξmj )2− 1

(ξmi − ξmj )2
=

∏
16s<t6M

(h(s)m − h(t)m − ps)(h(s)m − h(t)m + pt)
(h
(s)
m − h(t)m)(h(s)m − h(t)m + pt − ps)

. (6.19)

On the other hand, by using the recursion relation (5.27) we obtain

Ř(−)(σ̄ )ωm = (−1)l(σ̄ )
( ∏

16s<t6M
as,t (h

(s)
m − h(t)m)

)
ωm (6.20)

where

as,t (x) :=


x + pt

x + pt − ps (ps 6 pt)

x + pt
x

(ps > pt).
(6.21)
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Hence introducing

ρ(m) :=
( ∏

16s<t6M
ρs,t (h

(s)
m − h(t)m)

)
(6.22)

ρs,t (x) :=


x

x − ps (ps 6 pt)

x + pt − ps
x − ps (ps > pt).

(6.23)

We find from (6.19) and (6.21) that

c(m) =
( M∏
s=1

ps !

)
1

ρ(m)
(6.24)

and

〈�(−)m , �(−)m 〉(−) = N !ρ(m)〈8m(z) ,8m(z)〉c. (6.25)

Proposition 11.Form ∈MN we have(ξmi := αmi − i):

〈8m(z) ,8m(z)〉c =
1

N !

∏
16i<j6N

0
(
ξmi −ξmj

α
+ 1

α
+ 1

)
0
(
ξmi −ξmj

α
− 1

α
+ 1

)
{
0
(
ξmi −ξmj

α
+ 1

)}2 (6.26)

or, equivalently, in notations (5.23), (5.24):

〈8m(z) ,8m(z)〉c =
1

N !

( M∏
s=1

0
(
ps
α
+ 1

){
0
(

1
α
+ 1

)}ps )

×
∏

16s<t6M

0
(
h(s)m−h(t)m

α
+ pt

α
+ 1

)
0
(
h(s)m−h(t)m

α
− ps

α
+ 1

)
0
(
h
(s)
m−h(t)m
α
+ pt−ps

α
+ 1

)
0
(
h
(s)
m−h(t)m
α
+ 1

) . (6.27)

Proof. To prove the proposition we will use the known formula for the norms of symmetric
Jack polynomials. The Jack polynomialP (α)m (z) [19] is the unique symmetric vector in the
spaceEm := ⊕σ∈SmC8mσ (z) (m ∈MN) normalized so that in the expansion

P (α)m (z) =
∑
σ∈Sm

νm(σ )8mσ (z) (νm(σ ) ∈ R) (6.28)

the coefficientνm(id) is equal to 1. The symmetry conditions

Ki,i+1P
(α)
m (z) = P (α)m (z) (i = 1, 2, . . . , N − 1) (6.29)

together with formulae (5.11), (5.12) give the recursion relation

νm(σ (i, i + 1)) = (1−Ai (σ ))νm(σ )
= ξmi (σ )− ξmi+1(σ )− 1

ξmi (σ )− ξmi+1(σ )
νm(σ ) (mσ(i) > mσ(i+1)). (6.30)

Solving this relation with the initial conditionνm(id) = 1 gives

νm(σ̄ ) =
∏

16i<j6N
mi>mj

ξmi − ξmj − 1

ξmi − ξmj
(6.31)

whereσ̄ is the element of maximal length in the setSm (6.11).



The orthogonal eigenbasis and norms of eigenvectors in the SCSM3705

Let SymmN := ∑
σ∈SN

Kσ be the symmetrization operator inC[z±1
1 , z±1

2 , . . . , z±1
N ].

Then

SymmN8
m(z) = d(m)P (α)m (z) (d(m) ∈ R). (6.32)

Writing

SymmN8
m(z) =

∑
σ∈Sm

Kσ
∑
τ∈Sm

N

Kτ8
m(z) (6.33)

and using (5.13) and the result of lemma 2 we obtain

SymmN8
m(z) =

( M∏
s=1

ps !

)
κm(σ̄ )8mσ̄ (z)+

∑
σ∈Sm
σ 6=σ̄

ζ (σ )8mσ (z) (ζ(σ ) ∈ R) (6.34)

whereκm(σ̄ ) is given by (6.19). Comparing the last equation with (6.28) gives for the
coefficientd(m) in (6.32):

d(m) =
( M∏
s=1

ps !

)
κm(σ̄ )

νm(σ̄ )
=

∏
16i<j6N

ξmi − ξmj + 1

ξmi − ξmj
. (6.35)

Now the self-adjointness of the symmetrization operator with respect to the scalar
product (2.3) yields

〈8m(z) ,8m(z)〉c =
1

N !
d(m)〈P (α)m (z) , P (α)m (z)〉c. (6.36)

Using the expression [19, ch VI-10.38]:

〈P (α)m (z) , P (α)m (z)〉c =
∏

16i<j6N

0
(
ξmi −ξmj

α
+ 1

α

)
0
(
ξmi −ξmj

α
− 1

α
+ 1

)
0
(
ξmi −ξmj

α
+ 1

)
0
(
ξmi −ξmj

α

) (ξmi := αmi − i)

(6.37)

and (6.35) we obtain (6.26). Formula (6.27) follows from (6.26) by using the notations
(5.23) and (5.24). �

Now, by combining the result of proposition 11 and formula (6.25) we obtain the main
result of this section.

Proposition 12.Form ∈M(n)
N we have

〈�(−)m , �(−)m 〉(−)
M∏
s=1

0
(
ps
α
+ 1

){
0
(

1
α
+ 1

)}ps
×

∏
16s<t6M

0
(
h(s)m−h(t)m

α
+ pt

α
+ 1

)
0
(
h(s)m−h(t)m

α
− ps

α

)
0
(
h
(s)
m−h(t)m
α
+ pt−ps

α
+ θ(ps 6 pt)

)
0
(
h
(s)
m−h(t)m
α
+ θ(ps > pt)

)
(6.38)

where

θ(x) :=
{

1 whenx is true

0 whenx is false.
(6.39)
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6.2. The norm of the ground state in the fermionic case

The ground state�(−)
m0(N)

of the fermionic SCSM is identified with the highest-weight

vector in the Yangian subrepresentationFm
0(N) where the ground-state partitionm0(N)

is described as follows. For a given number of particles,N , let L ∈ {0} ∪ N and
q ∈ {0, 1, . . . , n− 1} be defined byN = nL+ q. Then

m0(N) =
{
(L)n(L− 1)n · · · (1)n(0)q (q 6= 0)

(L− 1)n(L− 2)n · · · (1)n(0)n (q = 0)
(6.40)

where we used the usual convention:(a)r = a, a, . . . , a︸ ︷︷ ︸
r

. The ground state�(−)
m0(N)

has

degeneracy equal to dimFm
0(N) =

(
n

q

)
.

One expression for�(−)m0(N)
is given by formula (5.31). For the special case of the

ground-state partitionm0(N) this expression can be simplified by taking into account the
triangularity of the non-symmetric Jack polynomials (5.9). This gives

�
(−)
m0(N)

= A
(−)
N (z

m0(N)

1 z
m0(N)

2 · · · zm0(N)
N ⊗ ((v1⊗ v2⊗ · · · ⊗ vn)⊗L)⊗ v1⊗ v2⊗ · · · ⊗ vq).

(6.41)

Let us introduce the Laurent polynomials̃fm0(N)(z1, z2, . . . , zN) andfm0(N)(z1, z2, . . . , zN)

by

f̃m0(N)(z1, z2, . . . , zN) :=
q∏
ε=1

( ∏
(ε−1)(L+1)<i<j6ε(L+1)

(zi − zj )
)

×
n∏

ε=q+1

( ∏
q+(ε−1)L<i<j6q+εL

(zi − zj )
)

and

fm0(N)(z1, z2, . . . , zN) :=


( N∏
i=q(L+1)+1

zi

)
f̃m0(N)(z1, z2, . . . , zN) (q 6= 0)

f̃m0(N)(z1, z2, . . . , zN) (q = 0).

And let the sequence(ε0
1, ε

0
2, . . . , ε

0
N) be defined as follows:

(ε0
1, ε

0
2, . . . , ε

0
N) :=

{
(1)L+1(2)L+1 · · · (q)L+1(q + 1)L · · · (n)L (q 6= 0)

(1)L(2)L · · · (n)L (q = 0).
(6.42)

Then up to a sign the ground state�(−)
m0(N)

can be represented as∑
σ

(−1)l(σ )fm0(N)(zσ(1), zσ(2), . . . , zσ(N))⊗ (vε0
σ(1)
⊗ vε0

σ(2)
⊗ · · · ⊗ vε0

σ(N)
) (6.43)

where the sum is taken over all permutations such that the corresponding sequences
(ε0
σ(1), ε

0
σ(2), . . . , ε

0
σ(N)) are all distinct.

Using this presentation we can write the norm of the ground state as

〈�(−)
m0(N)

, �
(−)
m0(N)
〉
(−) =

N !

{(L+ 1)!}q{L!}n−q
×〈fm0(N)(z1, z2, . . . , zN) , fm0(N)(z1, z2, . . . , zN)〉c. (6.44)
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By definition (2.3) of the scalar product on the space of Laurent polynomials we can now
recast the statement of proposition 12 for the case of the ground state as the following
integral formula

〈�(−)
m0(N)

, �
(−)
m0(N)
〉
(−) =

1

{(L+ 1)!}q{L!}n−q
( N∏
i=1

∮
|wi |=1

dwi
2π
√−1wi

)

×
∏
i<j

|wi − wj | 2
α |fm0(N)(w1, w2, . . . , wN)|2 =

0
(
( n
α
+ 1)L+ q

α
+ 1

)
L!( n

α
+ 1)L0

(
1
α
+ 1

)N .
(6.45)

6.3. The bosonic case

The computation of the norms of the Yangian highest-weight vectors in the bosonic case is
much simpler than that in the fermionic case. From equation (5.45) and the definition of
the Jack polynomial we immediately find

�(+)m = P (α)m (z)⊗ (v⊗N1 ) (m ∈MN). (6.46)

Hence the norm of the highest-weight vector is given by

〈�(+)m , �(+)m 〉(+) = 〈P (α)m (z) , P (α)m (z)〉c (6.47)

where the norm〈P (α)m (z) , P (α)m (z)〉c of the Jack polynomial is given by formula (6.37).

7. Eigenbases of the Gelfand–Zetlin algebra in the irreducible Yangian submodules
and norms of the eigenvectors

In this section we construct eigenbases of the operator-valued seriesA
(κ)

1 (u),
A
(κ)

2 (u), . . . , A(κ)n (u) within each of the irreducibleY (gln)-submodulesFm (m ∈ M(n)
N )

(κ = −1—fermionic case) andBm(m ∈MN) (κ = 1—bosonic case), and compute norms
of the eigenvectors that form these eigenbases.

Due to the isomorphisms given by theorems 1 and 2 the construction of the eigenbases
is carried out by a straightforward application of the results of Nazarov and Tarasov that
are summarized in section 3.

Let us fix a partitionm = (m1, m2, . . . , mN) ∈MN and let forκ = −1m ∈M(n)
N ⊂

MN . As in section 5 associate withm the following data:
M—the number of distinct elements in the sequencem = (m1, m2, . . . , mN); ps (s =
1, 2, . . . ,M)—the multiplicities of the elements in them:

m1 = m2 = · · · = mp1 > m1+p1 = m2+p1 = · · · = mp2+p1 > · · · > m1+pM−1+···+p2+p1

= m2+pM−1+···+p2+p1 = · · · = mpM+···+p2+p1≡N. (7.1)

Since in the fermionic case the partition is restricted:m ∈M(n)
N , we haveps ∈ {1, 2, . . . , n}

(s = 1, 2, . . . ,M) whenκ = −1.
With ξmi := ξmi (id) = αmi − i (5.10) set

h(s)m := −κξm1+p1+p2+···+ps−1
(p0 := 0, s = 1, 2, . . . ,M). (7.2)

For p ∈ {1, 2, . . . , n} let S(−)p denote the set of all Gelfand–Zetlin schemes3 that are
associated with the irreduciblegln-module with the highest weight (cf section 3)

(1, 1, . . . ,1︸ ︷︷ ︸
p

, 0, 0, . . . ,0︸ ︷︷ ︸
n−p

). (7.3)
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An element ofS(−)p is an array of the form

λn,1λn,2 · · · · · · · · · · · · · · ·λn,n
λn−1,1 · · · · · · λn−1,n−1

. . . · · · · · ·
λ2,1λ2,2

λ1,1

(7.4)

where

(λm,1, λm,2, . . . , λm,m) = (1, 1, . . . ,1︸ ︷︷ ︸
lm

, 0, 0, . . . ,0︸ ︷︷ ︸
m−lm

) (m = 1, 2, . . . , n)

ln = p (7.5)

and either

lm = lm+1 or lm = lm+1− 1 (m = 1, 2, . . . , n− 1). (7.6)

For p ∈ N let S(+)p denote the set of all Gelfand–Zetlin schemes3 = \λm,m′/n>m>m′>1

that are associated with the irreduciblegln-module with the highest weight (cf section 3)

(p, 0, 0, . . . ,0︸ ︷︷ ︸
n−1

). (7.7)

An element ofS(+)p is a Gelfand–Zetlin scheme of the form

αn0 · · · · · · · · · · · · · · ·0
αn−10 · · · · · ·0
. . . · · · · · ·
α20
α1

(7.8)

where

αm 6 αm+1 (m = 1, 2, . . . , n− 1) αn = p. (7.9)

Now let us define the following operator-valued series.
For the bosonic case set

a(+)m (u) = A(+)m (u) b(+)m (u) = B(+)m (u)

c(+)m (u) = C(+)m (u) d(+)m (u) = D(+)
m (u).

(7.10)

And for the fermionic case set

a(−)m (u) = 1(u)A(−)m (u) b(−)m (u) = 1(u)B(−)m (u)

c(−)m (u) = 1(u)C(−)m (u) d(−)m (u) = 1(u)D(−)
m (u)

(7.11)

where1(u) =∏N
i=1(u+ di). Then from proposition 10 it follows that

a(κ)m (u)† = a(κ)m (u) b(κ)m (u)
† = c(κ)m (u) c(κ)m (u)

† = b(κ)m (u) κ = −,+. (7.12)

For a collection of Gelfand–Zetlin schemes3(1), . . . , 3(M) such that3(s) ∈ S(κ)ps

(s = 1, 2, . . . ,M) define the following vector (cf section 3):

v
(κ)

3(1),...,3(M)
=

→∏
(m,m′)

( ∏
(s,t)

16t6λ(s)
n,m′−λ

(s)

m,m′

b(κ)m (ν
(s)
m,m′ − t)

)
�(κ)m (7.13)

v
(κ)

3(1),...,3(M)
∈
{
Fm (κ = −)
Bm (κ = +). (7.14)
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Here

ν
(s)
m,m′ = m′ − λ(s)m,m′ − 1− h(s)m (7.15)

and theh(s)m are defined by (7.2). From proposition 8 and theorems 1 and 2 it follows that
the set

{v(κ)
3(1),...,3(M)

|3(s) ∈ S(κ)ps
(s = 1, 2, . . . ,M)} (7.16)

is a base ofFm(resp. Bm) whenκ = −(resp.+). Due to proposition 4 this is an eigenbase
of the operators generating the Gelfand–Zetlin algebra:

A(κ)m (u) v
(κ)

3(1),...,3(M)
= A(κ)m (u;m)3(1),...,3(M)v(κ)3(1),...,3(M) (m = 1, 2, . . . , n) (7.17)

where the eigenvalues are defined by

A(−)m (u;m)3(1),...,3(M) =
M∏
s=1

u+ 1+ h(s)m
u+ 1+ h(s)m − l(s)m

(3(s) ∈ S(−)ps
) (7.18)

A(+)m (u;m)3(1),...,3(M) =
M∏
s=1

u+ h(s)m + α(s)m
u+ h(s)m

(3(s) ∈ S(+)ps
). (7.19)

Since〈8mσ (z) ,8nτ (z)〉c = 0 whenm 6= n, the subspacesFm(resp. Bm) are pairwise
orthogonal.

For α > 0 one can verify, that the datam ∈MN, (3
(1), 3(2) . . . , 3(M))(3(s) ∈ S(κ)ps

)

are uniquely restored from the collection of rational functions

A(κ)1 (u;m)3(1),...,3(M) ,A(κ)2 (u;m)3(1),...,3(M) , . . . ,A(κ)n (u;m)3(1),...,3(M) . (7.20)

That is the joint spectrum of eigenvalues of the Gelfand–Zetlin algebra is simple. Since
A(κ)m (u) are self-adjoint, we obtain the following.

Proposition 13.Form ∈M(n)
N (resp.m ∈MN ) the set

{v(κ)
3(1),...,3(M)

|3(s) ∈ S(κ)ps
(s = 1, 2, . . . ,M)} (7.21)

with κ = − (resp.κ = +) is an orthogonal base ofFm(resp. Bm).

The norms of the eigenvectorsv(κ)
3(1),...,3(M)

are as follows.

Proposition 14. Bosonic case. Letm ∈MN and3(s) ∈ S(+)ps
(s = 1, 2, . . . ,M). If we write

a Gelfand–Zetlin scheme3(s) as in (7.8):

3(s) = α(s)n 0 · · · · · · · · · · · · · · ·0
α
(s)

n−10 · · · · · ·0
. . . · · · · · ·
α
(s)

2 0
α
(s)

1

(7.22)

then the norm of the vectorv(+)
3(1),...,3(M)

is

〈v(+)
3(1),...,3(M)

, v
(+)
3(1),...,3(M)

〉
(+) = 〈�

(+)
m , �(+)m 〉(+)

×
∏

16m6n

{ ∏
16s6M

(α(s)n − α(s)m )!(α(s)n − α(s)m−1)!(α
(s)
m !)2

(α
(s)
m − α(s)m−1)!(α

(s)
n !)2

×
{ ∏
(s,s ′)
s 6=s ′

α
(s)
n −1∏
a=α(s)m

(−a + α(s ′)n + h(s
′)

m − h(s)m )(−1− a + α(s ′)m−1+ h(s
′)

m − h(s)m )
(−1− a + h(s ′)m − h(s)m )2

}
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×
∏
(s,s ′)
s<s ′

(α(s
′)

n − α(s)n + h(s
′)

m − h(s)m )
(α
(s ′)
m − α(s)m + h(s ′)m − h(s)m )

}

whereh(s)m are defined by (7.2) withκ = +.
Fermionic case. Let m ∈ M(n)

N and 3(s) ∈ S(−)ps
(s = 1, 2, . . . ,M). As in (7.5)

define l(s)m associated with the Gelfand–Zetlin scheme3(s) by the conditionsλ(s)
m,l

(s)
m

= 1

andλ(s)
m,l

(s)
m +1
= 0. Then the norm of the vectorv(−)

3(1),...,3(M)
is

〈v(−)
3(1),...,3(M)

, v
(−)
3(1),...,3(M)

〉
(−) = 〈�

(−)
m , �(−)m 〉(−)

{ ∏
16s6M

∏
(m,m′)

λ
(s)

m,m′ 6=λ
(s)

n,m′

(m′ − 1)!2(ps + 1−m′)!2

}

×
{ ∏
(s,s ′)
s<s ′

∏
(m,m′)

λ
(s)

m,m′ 6=λ
(s)

n,m′
λ
(s′)
m,m′ 6=λ

(s′)
n,m′

[ ps∏
j=0

(m′ − j − 1+ h(s ′)m − h(s)m )2

×
ps′∏
j=0

(m′ − j − 1+ h(s)m − h(s
′)

m )2
]

[(h(s)m − h(s
′)

m )4]−1

}

×
{ ∏
(s,s ′)
s 6=s ′

∏
(m,m′)

λ
(s)

m,m′ 6=λ
(s)

n,m′
λ
(s′)
m,m′=λ

(s′)
n,m′

[
(m′ − l(s ′)m + h(s

′)
m − h(s)m )

ps∏
j=0

(m′ − j − 1+ h(s ′)m − h(s)m )2
]

×[(m′ − 1− l(s ′)m−1+ h(s
′)

m − h(s)m )(m′ − 1− l(s ′)m + h(s
′)

m − h(s)m )

×(m′ − l(s ′)m+1+ h(s
′)

m − h(s)m )]−1

}
whereh(s)m are defined by (7.2) withκ = −. In these product formulaes ands ′ range from
1 toM (7.1) and(m,m′) (n > m > m′ > 1) are coordinates of points in a Gelfand–Zeltin
scheme ofgln. We give the proof in appendix B.

Remark. If α > 0 we can confirm directly that the norms of the previous proposition
are positive. The key points are as follows. For the bosonic case, ifs < s ′ then
h(s

′) − h(s) > ps, α
(s)
k 6 ps . For the fermionic case, ifs < s ′ thenh(s

′) − h(s) < −ps, 1 6
m′ 6 ps, l(s)k 6 ps .

Together with proposition 12 and formula (6.47) this proposition gives the norm
formulae for the orthogonal eigenbasis of the SCSM.

8. Concluding remarks

In this paper we have constructed an orthogonal basis of eigenvectors for the SCSM and
have derived product formulae for their norms. Our construction is based on the Gelfand–
Zetlin algebra associated with the Yangian symmetry of the model. It is now natural to
ask: what other properties of the eigenvectors are described in this paper? What we have
in mind is exemplified by the scalar case, where the orthogonal eigenvectors are described
by the symmetric Jack polynomials. For the Jack polynomials a number of properties such
as triangularity, Cauchy formulae, duality, existence of associated symmetric functions etc
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are known [19, 25]. We believe that most of these properties have their counterparts for the
Calogero–Sutherland model with spin, we plan to report on this subject in the future.

Appendix A. Proof of theorem 1

Recall that form ∈MN the subspaceWm
(−) ⊂ ⊗NCn was defined in (5.18) as follows:

Wm
(−) :=

⋂
i:mi=mi+1

Ker(Pi,i+1+ 1) (A.1)

and that from this definition it follows, in particular, that the dimension of theWm is zero
unlessm ∈M(n)

N where the setM(n)
N is defined in (5.19).

Proposition 15.If f ∈ Wm
(−) thenUm(−)f ∈ Fm, and the mapUm(−) : f −→ Um(−)f is an

isomorphism of the linear spacesWm
(−) andFm.

Proof. For an arbitraryψ ∈ Em ⊗ (⊗NCn) we write

ψ =
∑
σ∈Sm

8mσ (z)⊗ ψσ (A.2)

where the componentsψσ ∈ ⊗NCn are uniquely determined byψ . We haveψ ∈ Fm if
and only if

Ki,i+1ψ = −Pi,i+1ψ (i = 1, 2, . . . , N − 1). (A.3)

By virtue of (5.11), (5.12) and the linear independence of8mσ (z) equations (A.3) are
equivalent to

(Pi,i+1+ 1)ψσ = 0(mσ(i) = mσ(i+1)) (for all σ ∈ Sm and i = 1, 2, . . . , N − 1) (A.4)

ψσ(i,i+1) =


−Ři,i+1(x)ψσ (mσ(i) > mσ(i+1))

− x2

x2− 1
Ři,i+1(x)ψσ (mσ(i) < mσ(i+1))

x := ξmi (σ )− ξmi+1(σ ).

(A.5)

Notice that the second equation (the casemσ(i) < mσ(i+1)) in (A.5) is not independent but
follows from the first one (the casemσ(i) > mσ(i+1)).

For anyσ ∈ Sm define a setLσ whose elements are sets{ψτ }τ∈Sm(ψτ ∈ ⊗NCn). We
will say that{ψτ }τ∈Sm ∈ Lσ if and only if the following relations are satisfied

(Pi,i+1+ 1)ψσ = 0 (for all istmσ(i) = mσ(i+1)) (A.6)

and for allτ ∈ Sm and i = 1, 2, . . . , N − 1

ψτ(i,i+1) =


−Ři,i+1(x)ψτ (mτ(i) > mτ(i+1))

− x2

x2− 1
Ři,i+1(x)ψτ (mτ(i) < mτ(i+1))

x := ξmi (τ )− ξmi+1(τ ).

(A.7)

With this definition we have

ψ ∈ Fm ⇔ (A.4), (A.5)⇔ {ψσ }σ∈Sm ∈
⋂
σ∈Sm

Lσ . (A.8)

Lemma 3. ⋂
σ∈Sm

Lσ = Lid. (A.9)
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Proof. We will prove that for anyσ ∈ Sm, σ ≺ id the inclusion

{ψτ }τ∈Sm ∈
⋂
σ ′�σ

Lσ ′ (A.10)

implies

{ψτ }τ∈Sm ∈ Lσ . (A.11)

Then, since id is the maximal element inSm, induction of the order ofSm will give

Lid ⊂
⋂
σ∈Sm

Lσ (A.12)

and the statement of the lemma will follow.
Fix a σ ∈ Sm, σ ≺ id and assume that (A.10) holds. For anyσ ∈ Sm, σ ≺ id, i ∈

{1, 2, . . . , N − 1} exists such thatmσ(i) < mσ(i+1) (otherwiseσ must be equal to id).
With this i let σ ′ := σ(i, i + 1). Thenσ ′ ∈ Sm, and by the definition of the ordering

in Sm (5.7) we haveσ ′ � σ .
Now take anyj ∈ {1, 2, . . . , N − 1} such thatmσ(j) = mσ(j+1). If such aj does not

exist, the implication (A.10)⇒ (A.11) is obvious.
The following three situations may take place:

(1) |j − i| > 2 (A.13)

(2) j = i + 1 (A.14)

(3) j = i − 1. (A.15)

If (1) holds, thenmσ ′(j) = mσ ′(j+1), and by the assumption

{ψτ }τ∈Sm ∈
⋂
σ ′�σ

Lσ ′ (A.16)

we have

(Pj,j+1+ 1)ψσ ′ = 0. (A.17)

Relations (A.7) give

ψσ ′ = R̄i,i+1(x)ψσ

(
R̄i,i+1(x) := − x2

x2− 1
Ři,i+1(x), x := ξmi (σ )− ξmi+1(σ )

)
.

(A.18)

And hence

(Pj,j+1+ 1)ψσ = 0 (A.19)

becausex := ξmi (σ )− ξmi+1(σ ) = α(mσ(i) −mσ(i+1))+ σ(i + 1)− σ(i) < −1 whenα > 0
andmσ(i) < mσ(i+1), and therefore thēRi,i+1(x) is invertible.

Now let situation (2) hold (that isj = i + 1). Then

mσ(i) < mσ(i+1) = mσ(i+2) (A.20)

σ(i + 2) = σ(i + 1)+ 1. (A.21)

Let σ ′′ := σ ′(i, i + 1) = σ(i, i + 1)(i + 1, i + 2). We have

σ ′′(i) = σ ′(i) = σ(i + 1)

σ ′′(i + 1) = σ ′(i + 2) = σ(i + 2)

σ ′′(i + 2) = σ ′(i + 1) = σ(i)
(A.22)

and hence, by (A.20)σ ′′ � σ ′ � σ .
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By (A.7) and (A.22) one has

ψσ ′′ = R̄i+1,i+2(ξ
m
i (σ )− ξmi+2(σ ))R̄i,i+1(ξ

m
i (σ )− ξmi+1(σ ))ψσ . (A.23)

By assumption (A.16) we have

(Pi,i+1+ 1)ψσ ′′ = 0. (A.24)

Sinceξmi+1(σ )− ξmi+2(σ ) = 1, by the Yang–Baxter equation

Ři,i+1(ξ
m
i+1(σ )− ξmi+2(σ ))Ři+1,i+2(ξ

m
i (σ )− ξmi+2(σ ))Ři,i+1(ξ

m
i (σ )− ξmi+1(σ ))

= Ři+1,i+2(ξ
m
i (σ )− ξmi+1(σ ))Ři,i+1(ξ

m
i (σ )

−ξmi+2(σ ))Ři+1,i+2(ξ
m
i+1(σ )− ξmi+2(σ ))

and byŘi,i+1(1) = Pi,i+1+ 1 we obtain from (A.23), (A.24)

R̄i+1,i+2(ξ
m
i (σ )− ξmi+1(σ ))R̄i,i+1(ξ

m
i (σ )− ξmi+2(σ ))(Pi+1,i+2+ 1)ψσ = 0. (A.25)

Now (Pi+1,i+2 + 1)ψσ = 0 follows by the invertibility of the operators
R̄i+1,i+2

(
ξmi (σ )− ξmi+1(σ )

)
and R̄i,i+1

(
ξmi (σ )− ξmi+2(σ )

)
.

Situation (3) is considered in virtually the same way as (2) to show that (A.16) entails

(Pi−1,i + 1)ψσ = 0. (A.26)

Thus (A.10) implies (A.11) and the lemma is proven. �
From this lemma and (A.8) we obtain

ψ ∈ Fm ⇔ {ψσ }σ∈Sm ∈ Lid. (A.27)

Now we are in a position to show thatv ∈ Wm
(−) impliesUm(−)v ∈ Fm. Indeed, by the

definitions of Ř(−)(σ ) (5.27) andWm
(−) (5.18) we have{Ř(−)(σ )v}σ∈Sm ∈ Lid and hence

Um(−)v =
∑

σ∈Sm 8
m
σ (z)⊗ Ř(−)(σ )v belongs toFm as implied by (A.27).

Next, we demonstrate surjectivity of the mapUm(−) : Wm
(−) −→ Fm. Let

ψ =
∑
σ∈Sm

8mσ (z)⊗ ψσ ∈ Fm. (A.28)

Then{ψσ }σ∈Sm ∈ Lid ⇒ ψid ∈ Wm
(−) and by solving relations (A.7) we find

ψσ = Ř(−)(σ )ψid (σ ∈ Sm). (A.29)

Henceψ = Um(−)ψid and the surjectivity follows.
Now supposeUm(−)v = 0, v ∈ Wm

(−). Due to the linear independence of the non-
symmetric Jack polynomials8mσ (z) we obtain

Ř(−)(σ )v = 0 (σ ∈ Sm) (A.30)

and in particularv = 0 which shows injectivity of the mapUm(−). This completes the proof
of the proposition. �

For commuting operators (or complex numbers)ai (i = 1, 2, . . . , N) let T0(u) be the
following monodromy operator

T0(u, {ai}) := L0,1(u, a1)L0,2(u, a2) · · ·L0,N (u, aN). (A.31)

Here theL-operator is

L0,i (u, ai) := 1+ P0,i

u+ ai . (A.32)
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The subspaceFm for anym ∈M(n)
N is a Y (gln)-module with the action given by the

monodromy operator (4.1), (4.4)̂T0(u) = T0(u, {di}).
The spaceWm

(−) (5.18) is also aY (gln)-module. Now the action is specified by the
monodromy operatorT0(u, {ξmi (id)}). Indeed with this action we have the identity of the
Yangian modules (5.25):

Wm
(−) = Vp1(h

(1)
m )⊗ Vp2(h

(2)
m )⊗ · · · ⊗ VpM (h(M)m ) (A.33)

which is established by the standard fusion procedure taking into account thatξmi+1(id) =
ξmi (id)− 1 whenevermi = mi+1.

Proposition 16.The mapUm(−) : Wm
(−) −→ Fm is an intertwiner of theY (gln)-modules.

Proof. The intertwining property of theR-matrix:

L0,i (u, ξ
m
i (σ ))L0,i+1(u, ξ

m
i+1(σ ))Ři,i+1(ξ

m
i (σ (i, i + 1))− ξmi+1(σ (i, i + 1))

= Ři,i+1(ξ
m
i (σ (i, i + 1))− ξmi+1(σ (i, i + 1))

×L0,i (u, ξ
m
i (σ (i, i + 1)))L0,i+1(u, ξ

m
i+1(σ (i, i + 1))) (A.34)

and (5.10) entail the following chain of equations(v ∈ Wm
(−)):

T̂0(u)U
m
(−)v =

∑
σ∈Sm

8mσ (z)⊗ T0(u; {ξmi (σ )})Ř(−)(σ )v

=
∑
σ∈Sm

8mσ (z)⊗ Ř(−)(σ )T0(u, {ξmi (id)})v = Um(−)T0(u, {ξmi (id)})v. (A.35)

�

Propositions 15 and 16 imply the statement of theorem 1.

Appendix B. Proof of proposition 14

Let us define the vector

v̄
(κ)

3(1),...,3(M)
= Um(κ)

( ∏
(s,t)

16t6λ(s)
n,m′−λ

(s)

m,m′

bm(ν
(s)
m,m′ − t)

)
(Um(κ))

−1�(κ)m (κ = −,+) (B.1)

wherebm(u) andν(s)m,m′ − t are defined in (3.37), (7.15). Notice that the following relations
are satisfied:

v
(κ)

3(1),...,3(M)
= fκ(3(1), . . . , 3(M))v̄

(κ)

3(1),...,3(M)
for some scalar functionfκ(·). (B.2)

The calculation of the functionfκ(·) can be done by comparing the ratio ofbm(u) with
b(κ)m (u)(κ = −,+). We will calculate the norms of̄v(κ)

3(1),...,3(M)
. Then we will obtain the

norms ofv(κ)
3(1),...,3(M)

.

To calculate the norms of̄v(κ)
3(1),...,3(M)

, we will derive recursion relations between

(3(1), . . . , 3(i), . . . , 3(M)) and (3(1), . . . , 3(i) + em,m′ , . . . , 3(M))

and will solve them. Here3(i)+em,m′ is the Gelfand–Zetlin scheme, whose(j, j ′)-elements
areλj,j ′ + δj,mδj ′,m′ .
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Proposition 17.

〈v̄(κ)
3(1),...,3(i),...,3(M)

, v̄
(κ)

3(1),...,3(i),...,3(M)
〉(κ) = 〈v̄(κ)3(1),...,3(i)+em,m′ ,...,3(M) , v̄

(κ)

3(1),...,3(i)+em,m′ ,...,3(M)〉(κ)
×$m+1,+(ν)$m−1,+(ν − 1)$m,+(ν)−1$̄m,+(ν − 1). (B.3)

Hereν = m′ −λ(s)m,m′ −1−h(s)m , and$k,+(u), $̄k,+(u) are defined by the following relations:

$k,+(u)v̄
(κ)

3(1),...,3(i)+em,m′ ,...,3(M) = ak(u)v̄
(κ)

3(1),...,3(i)+em,m′ ,...,3(M) (B.4)

$̄k,+(u) = lim
u′→u

(u− u′)$k,+(u′). (B.5)

Proof. By using relation (7.12) and (B.2), we obtain

〈v̄(κ)
3(1),...,3(i),...,3(M)

, v̄
(κ)

3(1),...,3(i),...,3(M)
〉(κ) = 〈v̄(κ)3(1),...,3(i)+em,m′ ,...,3(M) , U

m
(κ)

×cm(ν − 1)bm(ν − 1)(Um(κ))
−1v̄

(κ)

3(1),...,3(i)+em,m′ ,...,3(M)〉(κ)
= lim

ν ′→ν
〈v̄(κ)
3(1),...,3(i)+em,m′ ,...,3(M) , U

m
(κ)cm(ν − 1)bm(ν

′ − 1)

×(Um(κ))−1v̄
(κ)

3(1),...,3(i)+em,m′ ,...,3(M)〉(κ). (B.6)

On the other hand, relation (3.42) gives

cm(ν − 1)bm(ν
′ − 1) = bm(ν ′ − 1)cm(ν − 1)

+ 1

ν − ν ′ {dm(ν − 1)am(ν
′ − 1)− dm(ν ′ − 1)am(ν − 1)}. (B.7)

Sinceam(ν − 1)(Um(κ))
−1v̄

(κ)

3(1),...,3(i)+em,m′ ,...,3(M) = 0, and

lim
ν ′→ν

1

ν − ν ′ am(ν
′ − 1)v̄(κ)

3(1),...,3(i)+em,m′ ,...,3(M) = $̄m,+(ν − 1)v̄(κ)
3(1),...,3(i)+em,m′ ,...,3(M)

we have

〈v̄(κ)
3(1),...,3(i),...,3(M)

, v̄
(κ)

3(1),...,3(i),...,3(M)
〉(κ) = 〈v̄(κ)3(1),...,3(i)+em,m′ ,...,3(M) , U

m
(κ)bm(ν − 1)cm(ν − 1)

×(Um(κ))−1v̄
(κ)

3(1),...,3(i)+em,m′ ,...,3(M)〉(κ) + 〈v̄
(κ)

3(1),...,3(i)+em,m′ ,...,3(M) , U
m
(κ)dm(ν − 1)

×(Um(κ))−1v̄
(κ)

3(1),...,3(i)+em,m′ ,...,3(M)〉(κ)$̄m,+(ν − 1)

= 〈v̄(κ)
3(1),...,3(i)+em,m′ ,...,3(M) , U

m
(κ)bm(ν − 1)cm(ν − 1)

×(Um(κ))−1v̄
(κ)

3(1),...,3(i)+em,m′ ,...,3(M)〉(κ) + 〈v̄
(κ)

3(1),...,3(i)+em,m′ ,...,3(M) , U
m
(κ)bm(ν − 1)

×cm(ν)(Um(κ))−1v̄
(κ)

3(1),...,3(i)+em,m′ ,...,3(M)〉(κ)$̄m,+(ν − 1)$m,+(ν)−1

+〈v̄(κ)
3(1),...,3(i)+em,m′ ,...,3(M) , v̄

(κ)

3(1),...,3(i)+em,m′ ,...,3(M)〉(κ)$̄m,+(ν − 1)$m,+(ν)−1

×$m+1,+(ν)$m−1,+(ν − 1). (B.8)

In (B.8), we used relation (3.43). Then if we show the following lemma, we have proven
proposition 17. �
Lemma 4.In the situation of proposition 17, we have

〈v̄(κ)
3(1),...,3(i)+em,m′ ,...,3(M) , U

m
(κ)bm(ν − 1)cm(ν − 1)(Um(κ))

−1v̄
(κ)

3(1),...,3(i)+em,m′ ,...,3(M)〉(κ)
+〈v̄(κ)

3(1),...,3(i)+em,m′ ,...,3(M) , U
m
(κ)bm(ν − 1)cm(ν)

×(Um(κ))−1v̄
(κ)

3(1),...,3(i)+em,m′ ,...,3(M)〉(κ)$̄m,+(ν − 1)$m,+(ν)−1 = 0. (B.9)
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Proof. By using relation (3.42), we can show inductively that if3(i) + tem,m′ ∈ Sλ(r) then

l.h.s. of (B.9) = 〈v̄(κ)
3(1),...,3(i)+em,m′ ,...,3(M) , U

m
(κ)bm(ν − 1) · · · bm(ν − t)cm(ν − 1)

×(Um(κ))−1v̄
(κ)

3(1),...,3(i)+tem,m′ ,...,3(M) + U
m
(κ)bm(ν − 1) · · · bm(ν − t)cm(ν)

×(Um(κ))−1v̄
(κ)

3(1),...,3(i)+tem,m′ ,...,3(M)$̄m,+(ν − 1)$m,+(ν)−1〉(κ). (B.10)

Let t be the maximal number st3(i) + tem,m′ ∈ Sλ(r) . From relations (7.12), we obtain

l.h.s. of (B.9)

= 〈Um(κ)cm(ν − t) · · · cm(ν − 1)(Um(κ))
−1v̄

(κ)

3(1),...,3(i)+em,m′ ,...,3(M) , U
m
(κ)cm(ν − 1)

×(Um(κ))−1v̄
(κ)

3(1),...,3(i)+tem,m′ ,...,3(M) + U
m
(κ)cm(ν)

×(Um(κ))−1v̄
(κ)

3(1),...,3(i)+tem,m′ ,...,3(M)$̄m,+(ν − 1)$m,+(ν)−1〉(κ). (B.11)

If we apply repeatedly theorem 3.5 from [23] (hereγ (i)m,m′ is some constant),

Um(κ)cm(ν
(i)
m,m′)(U

m
(κ))
−1v̄

(κ)

3(1),...,3(i),...,3(M)

=
{
γ
(i)
m,m′ v̄

(κ)

3(1),...,3(i)+em,m′ ,...,3(M) if 3(i) + em,m′ ∈ Sλ(r)
0 otherwise

(B.12)

we have

Um(κ)cm(ν − t) · · · cm(ν − 1)(Um(κ))
−1v̄

(κ)

3(1),...,3(i)+em,m′ ,...,3(M) = 0. (B.13)

So we obtain lemma 4. �

Let \κm,m′/ be the Gelfand–Zetlin scheme which corresponds to the highest-weight
vector, the highest weights are(λn,1, . . . , λn,n) (i.e. κm,m′ = λn,m′ for all possiblem,m′). If
we solve the recursive relations of proposition 17, we obtain the following.

Proposition 18.

〈v̄(κ)
3(1),...,3(i),...,3(M)

, v̄
(κ)

3(1),...,3(i),...,3(M)
〉(κ) = 〈v̄(κ)hwv, v̄

(κ)

hwv〉(κ)
∏
(m,m′)
m′6m

{ ∏
(s,s ′)

for all pairs

{ κ
(s)

m,m′−1∏
a=λ(s)

m,m′

{
(−1)δs,s′

×
m′∏
j=1

(m′ − j − a + κ(s ′)m+1,j + h(s
′)

m − h(s)m )

×
m+1∏

j=m′+1

(m′ − j − a + λ(s ′)m+1,j + h(s
′)

m − h(s)m )

×
m′−1∏
j=1

(m′ − j − 1− a + κ(s ′)m−1,j + h(s
′)

m − h(s)m )

×
m−1∏
j=m′

(m′ − j − 1− a + λ(s ′)m−1,j + h(s
′)

m − h(s)m )
}

×
m′−1∏
j=1

(m′ − j − κ(s)m,m′ + κ(s
′)

m,j + h(s
′)

m − h(s)m )
(m′ − j − λ(s)m,m′ + κ(s

′)
m,j + h(s

′)
m − h(s)m )
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×
m∏

j=m′+1

(m′ − j − κ(s)m,m′ + λ(s
′)

m,j + h(s
′)

m − h(s)m )
(m′ − j − λ(s)m,m′ + λ(s

′)
m,j + h(s

′)
m − h(s)m )

}

×
∏
(s,s ′)
s<s ′

(−κ(s)m,m′ + κ(s
′)

m,m′ + h(s
′)

m − h(s)m )
(−λ(s)m,m′ + λ(s

′)
m,m′ + h(s

′)
m − h(s)m )

}
.

If we rewrite proposition 18 for the bosonic (resp. the fermionic) case and take into
account the functionfκ(·), we obtain proposition 14.
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