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Abstract. Using a technique based on the Yangian Gelfand-Zetlin algebra and the associated
Yangian Gelfand-Zetlin bases we construct an orthogonal basis of eigenvectors in the Calogero—
Sutherland model with spin, and derive product-type formulae for norms of these eigenvectors.

1. Introduction

In this paper we study the spin generalization of the Calogero—Sutherland model which
was proposed in [7] and later rediscovered in [4]. This model descibgarticles with
coordinatesxy, x2, ..., xy moving along the circle of the unit radiy® < x; < 27). Each
particle carries a spin with possible values, and the dynamics of the model is governed
by the Hamiltonian

N 2
ad 1 P+
Hscsm= — E 22ty 7’3_( 'jx__f) (1.1)
im0 1<iZj<n Sirf (%)

whereg is a coupling constant ang ; is the spin exchange operator for the parti¢laad ;.

The scalar version of thélscsy (n = 1) has been studied over the course of the past
25 years starting with the work of Sutherland [26]. Among the recent advances one can
point out the connection of th&lscsy (n = 1) with the random matrix theory [11], exact
computation of the dynamical correlation functions [14, 16, 20] and the intriguing connection
with the Virasoro and théV-algebras [2]. To a large extent many of these developments,
in particular the computation of the correlation functions, were based on the properties
of the symmetric Jack polynomials which describe the orthogonal eigenbasis of the scalar
Calogero—Sutherland model [25, 19].

Considerably less is known about the Calogero—Sutherland model with(ispin2).
In the work of [4] the construction of eigenvectors for the Calogero—Sutherland model with
general spin was proposed. This construction is based on the diagonalization of the Dunkl
operators [10] by the non-symmetric Jack polynomials. Although the way to obtain the
eigenvectors was pointed out in [4], the complete and orthogonal eigenbasis has not been
constructed so far.

In the present paper we give a construction of such an eigenbasis in terms of the non-
symmetric Jack polynomials and derive explicit product-type formulae for the norms of the
eigenvectors.
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In the case of the scalar model the knowledge of explicit formulae for the norms of
the Jack polynomials has been essential for the computation of the dynamical correlation
functions. Therefore we believe that the results of our present work will turn out to be
of use in the computation of the two-point dynamical correlation functions in the spin
Calogero—Sutherland model (SCSM).

Let us now describe the main features of our construction. The principal role in it
is played by the Yangian symmetry of the SCSM. As was discovered and emphasized
in [4], the space of states in the model admits the action of the algBbyg)—the
Yangian of gl,, [9,23]. This action is given by the x n operator-valued monodromy
matrix || 7,.»(u) | 1<a.0<n Which is regarded as the formal Taylor series in negative powers
of the spectral parametar The centre of the Yangian action is generated by the operator
coefficientsA® in the expansion of the quantum determinauketr () of the monodromy
matrix:

oo
gdetl ()= Y (D' T, -1 Tiomu—n+1) =Y u*A® (1.2)
s=0

ceq,

[T,»u), A¥]T=0 (a,b=21,2,...,n;5s=0,1,2,...). (1.3)

The Hamiltonian of the model belongs to the Abelian algebra generated by the conserved
chargesA® [4] and thereby commutes with the Yangian action.

In the scalar casé: = 1) the YangianY (gl;) coincides with its centre and is just the
algebra of the conserved charges in the Calogero—Sutherland model. Itis known [18, 19] that
in this case the joint spectrum of the conserved charges is simple, and that the opgfators
are self-adjoint with respect to the scalar product relevant for the computation of quantities
such as correlation functions. Hence the orthogonal eigenbagig«fy (n = 1) is defined
uniquely up to normalizations of eigenvectors as the eigenbasis of the Abelian algebra
generated by the conserved charges.

In the situation when the spin is non-trivigh > 2) the spectrum of the quantum
determinant is not simple and thus the higher conserved charges alone are not sufficient
to specify an orthogonal eigenbasis. To give such a specification, in this paper we use
a maximal Abelian sub-algebra df(gl,) denoted byA(gl,) and known as the Yangian
Gelfand—Zetlin algebra. This algebra includes the centre of the Yangian as a sub-algebra.
The algebraA(gl,) was first studied by Cherednik [5] and subsequently by Nazarov and
Tarasov [22,23]. It is defined as the sub-algebr& {gl,) generated by all the centres in
the chain of algebras

Y(gl) C Y(gla) C--- C Y(ghy) 1.4)

whereY (gl,,_1) is realized inside¥ (gl,,) as the sub-algebra generated by the entries of the
sub-matrix|| T, » () ll1<a.p<m—1-

The generators of the Abelian algeb#dgl,) which appear in the SCSM possess the
following two crucial properties:

e They are self-adjoint with respect to the relevant scalar product (defined in section 2).

e They are simultaneously diagonalizable and their joint spectrum is simple.

From these two properties it follows that, since the spin Calogero—Sutherland
Hamiltonian belongs to the algebra(gl,), the eigenbasis of the algebri(gl,) is an
orthogonal eigenbasis of the Hamiltonian.

Construction of this eigenbasis is the first main problem that we address in this paper.
This construction is carried out in two steps. First, we describe the decomposition of the
space of states in the model into irreducible sub-representations of the Yangian action and
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point out the Yangian highest-weight vector in each of the irreducible components. These
highest-weight vectors are expressed in terms of the non-symmetric Jack polynomials.

In [23] Nazarov and Tarasov gave construction of canonical bases, called Yangian
Gelfand-Zetlin bases, for a wide class of Yangian representations which included all
representations which appear as irreducible components of the Yangian action in the SCSM.
The Yangian Gelfand—Zetlin base was first considered by Cherednik in [5] and is defined
as the base where the action of the Abelian algeb¢gl,) is diagonal. It includes the
highest-weight vector and ‘descendants’ which are obtained by acting on the highest-weight
vector with appropriate creation operators described explicitly in [23].

Once we have found the irreducible Yangian decomposition of the space of states and
have identified the highest-weight vectors, the results of [5, 23] can immediately be applied
to describe the eigenbasis afgl,) within each of the irreducible sub-representations and
hence in the entire space of states of the model.

The second main problem which we consider in this paper is computation of the norms
of the eigenvectors. This computation is performed as follows. First, the norms of the
Yangian highest-weight vectors are found by expressing them in terms of the norms of
the non-symmetric Jack polynomials known from [8,17,24]. The norm formulae for the
non-symmetric Jack polynomials are essential in this computation. The norm of the highest-
weight vector is equal to the norm of a certain non-symmetric Jack polynomial multiplied
by a non-trivial coefficient. The norms of the ‘descendants’ which constitute the rest of the
Yangian Gelfand—Zetlin base are computed recursively from the norm of the highest-weight
vector by using properties of the creation operators of [23].

The approach that we use in the present paper to construct the orthogonal eigenbasis
and compute normalizations of the eigenvectors is by no means the only possible one. In
this paper we consider the wavefunctions of the model as having both a coordinate and spin
part so that a complete wavefunction is either totally symmetric or totally asymmetric. In
this framework the Yangian symmetry and the associated Gelfand—Zetlin bases are the most
natural to work with.

Another, equivalent, framework is provided by the polynomial presentation for the
SCSM [15, 12, 3] which amounts to considering the Hamiltonian of the model as an
operator which acts only on the coordinate part of the wavefunction. In this approach
the spin part of the wavefunction does not appear explicitly but can always be recovered
from the requirement that the complete wavefunction is to be totally symmetric or
asymmetric. Polynomial eigenfunctions of the Hamiltonian are then obtained as certain
linear combinations of non-symmetric Jack polynomials. These eigenfunctions exhibit
rather complicated symmetry properties under permutation of variables and are called Jack
polynomials with prescribed symmetry [3].

One can consider the problem of constructing an orthogonal eigenbasis of the model
in terms of these polynomials and the problem of computing norms of the eigenvectors.
The former problem was solved in [3]. The norms have not been computed so far in
full generality (see however [12] for special cases and conjectures). It is clear that these
norms are linear combinations of the known norms for the non-symmetric Jack polynomials
[8,17,24], however, the problem of computing coefficients of these linear combinations
seems to be technically rather complicated.

Now let us describe the contents of this paper. In section 2 we recall the definition of
the SCSM. In section 3 the necessary background information on the Yangian and Yangian
Gelfand-Zetlin bases is reviewed. The contents of this section largely follow the work of
[23]. In section 4 we discuss properties of Yangian action in the SCSM. In section 5 the
irreducible Yangian decomposition of the space of states is given. The main results in this
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section are theorems 1 and 2. Section 6 contains derivation of the norm formulae for the
Yangian highest-weight vectors. The main result here is proposition 12. In section 7 we
give expressions for the ‘descendants’ of the highest-weight vectors. Proposition 14 gives
formulae for their norms. The appendix contains proofs of some of the statements in the
main text.

2. Definition of the model

In this section we will review the definition and a few known facts about the SCSM. In
doing so we will closely follow the work of [4] where this model was introduced and

extensively studied for the first time under the name of the dynamical model with long-
range interaction. We would like to note, that the model which we define below is the
gauge-transformed version of (1.1) [4].

2.1. The Hilbert space of states in the gauge-transformed SCSM
The space of states of the gauge-transformed SCSM [4] is a subspace in the tensor product
H = (C[Zl , Z2 s ZNl] ® (®N(Cn) (21)

.....

product(-, -), by requmng pure tensors to be orthonormal:

(Ve Ve, @ - @ Ve, U, QUp, ® -+ @ Uy ) 1_[86 . (6,1, =1,2,...,n). (2.2)
In C[z1 , z2 e z,{il] we define the Hermitian scalar produet - ) which depends on the
parameterr € R.o. For f(z1, 22, ..., 2n), 8(21. 22, ... 2n) € Clzi . 25 ..., 2y ] set

1 N dwi
(f.8)c: ( yg )

TN ,11 w |=1 27T/ —1w;

(Hl— ) fwy, wy, ..., wy)g(wy, wo, ..., wy) (2.3)
i#]

where the integration over each of the complex variabless taken along the unit circle
in the complex plane. The Hermitian scalar prodyct) in the spaceH is defined as the
composition of the scalar products (2.2) and (2.3). For <C[z1 ,22 , ...,zil] andu, v
€ @VC" put

(f@u,g®v) :=(f,g)(u,v); (2.4)

and extend thé-, -) on the entire spac® by requiring it to be sesquilinear.
The symmetric grouy acts in theH. For

(1 2 ... N ce
7T\o® 0@ - o) =N
there are two right actions, and P, defined in the basg "'z, - - - 2" ®ve, QUe, ®- - Qe }
(m; € Z,1 < ¢ < n) of the spaceH by

Mg (1) Mg (N)
Zl "ZN ®v€1®"'®v€1\1

2 (2.5)
Zl .. 'ZN ® Ue(,(l) Q- UGU(N)'

K
Py



The orthogonal eigenbasis and norms of eigenvectors in the SCSIB689

For the transpositiof, j) € Sy we will use the notations
K(i.j) = K,‘,j and P(,',j) = P,‘J‘. (26)

The operatorX; ; and P; ; are easily seen to be self-adjoint and unitary with respect to the
scalar product (2.4).

The SCSM can be defined in two versions—fermionic and bosonic [4]. Throughout
this paper we will distinguish these versions by the sign of the parametsetting
k = —(respx = +) for the fermionic (respbosonic) case. The space of stafg4’
in the gauge-transformed SCSM is then defined as follows:

N-1
HY == [\ Ker(KiiaPrisa— k1) CH. 2.7
i=1
Or, equivalently, as the image of the total asymmetrization or symmetrization operator:
Ay = Y 1)K, Py (2.8)

O'E@N

The subspacé{® inherits the scalar produgR.4) from the space. We will use the
notation(-, -),, for this scalar product.

2.2. The Hamiltonian of the SCSM

The gauge-transformed SCSM Hamiltonian is defined through the Cherednik—Dunkl
operators [10 6,4]:

d; —az, l-I—Z

(K= 1 - Y (k- (=12 ... N)

i<j %~ i>j i —Zj
(2.9)
which satisfy the relations of the degenerate affine Hecke algebra:
Kiiv1di —di1Kiiya=1 (2.10)
[dj. Kiival =0 (J#ii+1D (2.11)
[di.d;] =0. (2.12)
We will consider the Cherednik—DunkI operators as acting eith@[hjﬁl, zzﬂ, ce ZN Yor
in the first factor inH = C[z;%, 237, . .., 2511 ® (®VC") by expressions (2.9) and trivially

in the second factor¢®@”™ C") without always giving exact specification since this is unlikely
to cause any confusion.

Relations (2.10)—(2.12) imply, in particular, that symmetric polynomials in
di,ds, ...,dy leave the subspacdg™® invariant [4]. In terms of the Cherednik—DunkI
operators the gauge-transformed Hamiltonf&’ € End+*) of the SCSM is

N 3\ 3
H® = Z{(OIZ[BZ) + (2 —N—l)OlZiaz_}

i=1
Zi d il ZiZj
+2a -z +— (—kP;j+1 }
Z {Zi —z < 0z 81,) (zi —z))(zj — z,')( it

1, Y N +1)\° 5
+-—-N(N —1)_;(d,~—2) — N(N +1)2. (2.13)
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Here to show the equality one has to use the relation

Kl'yjfZKP,’,jf (214)
which holds for anyf € H* due to definition (2.7).

By a straightforward calculation one checks that the Cherednik—Dunkl operators are
self-adjoint with respect to the scalar product (2.3) and hence the Hamiltghi@nis
self-adjoint with respect to the scalar prodyct-),. The physical HamiltoniarHS(KC)SM is
obtained from the ® by performing the gauge transformation [4]:

N
(x) 1 K _1 ZiZj
Hgcsy = VeH®V e = Zl (0121 [) + ; m(_K(XPLj +1) (2.15)
1= 1]
where
s
V= (H ) [1z -3 (2.16)
i=1 i<j

The HamiltonianH{s,, is identified up to the overall factar? with the Hamiltonian (1.1)

where = —«1/a andz; = exp(v/—L1x;). The Hig,, is self-adjoint with respect to the
physical scalar product which is obtained from (2.4) by formally putting co.

3. Yangian Y (gl,,) and the Yangian Gelfand—Zetlin bases

In this section we summarize properties of the Yanglaml,) which are used in this
paper. The main attention is given to the Gelfand—Zetlin algebra and the canonical Yangian
Gelfand—Zetlin bases in certain irreducible Yangian modules. The contents of this section,
with the exception of the lemma 1 can be found in the works of [22, 23].

3.1. The definition of the Yangian(gl,) and the Gelfand—Zetlin algebra

The YangianY (gl,,) is a unital associative algebra generated by the elements Jrﬁ,hd
wherea,b=1,...,n ands = 1, 2,... that are subject to the following relations:

(!, 751 - [T<’+1>, TS =118 - 151" (rs=012..) (3.1)
where 7,9 := 8, 1.
Introducing the formal Taylor series !
TopW) =8 + T ou™ + TG U2+ - (3.2)

k
defineT (u)(k = 1, 2) as follows:

. S gl n n -1
T )= Y Ey)®T,,u) e EndC") ® ENdC") ® ¥ (gl)[[u]]. (3.3)
a,b=1
Here E[(lkz are the standard matrix units that are acting initietensor factoC". If we put

R(u,v) = id +7 Z ES @ EY (3.4)
ab 1

then the defining relations df (gl,,) are

1 2 2 1
Rw,v) T ) T (v) =T (v) T (u)R(u,v). (3.5
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Leti = (i1,...,in) andj = (j1, ..., jm) be two sequences of indices such that
1<ii<--<ip<n and 1< ji<-- < jn <. (3.6)
Let G,, be the symmetric group of degree Define

Qi) = Y (=T o W Ty 6 = 1)+ T, o (w—m + 1) (3.7)

eSS,
and
Ag(u) =1 Ap(u) = Qii(u) (m=1,...,n) (3.8)
By(u) = Q45(u) Cn(u) = Qji(u) Dy (u) = Qj;(u) m=1...,n-1

(3.9)

wherei =(1,...,m)andj=(,...,m— 1, m+1).
The following propositions can be found in [22].

Proposition 1 ([22]). (a) The coefficients ofi,, (1) belong to the centre of the algebrégl,,).
(b) All the coefficients ofd1(u), ..., A,(u) pairwise commute.

Proposition 2 ([22]). The following commutation relations hold iri(gl,,):

[A, (), Bj(v)] =0 if ] £m (3.10)
[Cn(u), Bi(v)] =0 if I £m (3.11)
[B, (1), Bi(v)] =0 if |l —m|#1 (3.12)
(u — V)[An W), By(v)] = By ()Au(v) — Bp(v)Ap (1) (3.13)
(u —v)[C,(n), B,,(v)] = D,,(u)A,; (V) — D,, (W) A, (). (3.14)

Proposition 3 ([22]). The following relation holds ir¥ (gl,,):

By relations (3.14), (3.15) we obtain

Dm (u)Am (u + 1) = Am+1(” + 1)Amfl(u) - Bm(”)cm (u + 1) (316)
By proposition 1, the coefficientds of the seriesA1(u), ..., A, (u):
Ap() = u A m=12,...,n (3.17)

s>0

generate the commutative sub-algebraYicyl,). This algebra is called Gelfand-Zetlin
algebra and is denoted (gl,).
The following lemma will be used in the next section.

Lemma 1.Let*: Y(gl,) — Y(gl,) be the algebra anti-involution such that
5 =1 7% =12 and  ADT =40 (t=0,1,2...). (3.18)
Then

7O =7  foralls=0,1,2,.... (3.19)
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Proof. The lemma is proven by induction i SupposeTa(fb)* = Tb(’a) hold for all r < s.
Then the relations of the Yangian (3.1) and

1)* 1 2)* 2
Ty =T T =Ty, (3.20)
entail
T;:sb-&-l)* — Tb(:;-&-l) (a 75 b) and (Ta(;y:l) _ T};(;Y};+1))* — Ta(fa-&-l) _ T};(:Y}jl)' (321)

And the condition on the quantum determinant:

ADT=AP  (1=012..) (3.22)
gives

TP+ 057 4+ TGP =P+ Y+ T (3.23)

This completes the proof of the induction step. Taking conditions (3.20) as the induction
base we obtain the statement of the lemma. O

3.2. Yangian Gelfand—Zetlin bases

Let V be an irreducible finite-dimensiongl,-module andE, , be the generators afl,.
Denote byv, the highest-weight vector iW':

Eq a5 = AUy E,pv, =0 a <b. (3.24)

Then each differencg, — 1,1 iS a non-negative integer. We assume that gacls also
an integer. Denote by, the set of all arraysA, with integral entries of the form

(3.25)

wherex,; = x; andi; > A,,,; for all i andm. The array,A, is called a Gelfand—Zetlin
scheme if

)\m,i > )\mfl,i 2 )‘m,i+1 (326)

for all possiblem andi. Denote byS, the subset ir7; consisting of the Gelfand—Zetlin
schemes.

There is a canonical decomposition of the sptdato the direct sum of one-dimensional
subspaces associated with the chain of sub-algebras

These subspaces are parametrized by the elements S,. The subspacd/y, c V
corresponding toA € S, is contained in an irreduciblgl,,-submodule of the highest
weight (A1, Am2, -+ o Amom) fOr eachm = n — 1, n — 2,...,1. These conditions define
Va uniquely. [13].

Let us recall some facts about representations of the Yarkiah).

If we setu’ = u + h,v' = v+ h(h € C), relations (3.5) are also satisfied far, v').
Thus the map
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defines an automorphism of the algelifggl,). So if there is a representatioly,, of
Y (gl,), we can construct another representationY@fl,) by the pullback through this
automorphism.

We can regard the representation of the Lie algetiraas the representation &f(gl,,).
This transpires due to the existence of the homomorphisrfrom Y (gl,) to U(gl,): the
universal enveloping algebra gf,:

Ty Ta,b(”) = sa,b + Eb,au_l- (329)

Let V, be the irreduciblegl,-module whose highest weight s = (A1, A2, ..., Ay).
We denote byV; (k) the Y (gl,)-module obtained fromV; by the pullback through this
homomorphism and the automorphism (3.28).

The YangianY (gl,) has the coproduch : Y(gl,) — Y(gl,) ® Y(gl,). It is given as
follows:

A(Tap@) =Y Tac(u) @ Te (). (3.30)
c=1
So if there are representatiofs(i = 1, ..., M) of the YangianY (gl,), we can construct

the representatiol; ® V> ® - -- ® Vy, of Y(gl,,):
Tap@WW1® V2@ @ vy) = A" Vo0 AP(T, )WL ® V2@ -+ @ vy)

= Y Tur W01 ® Ti b )02 ® -+ @ Ty (). (3.31)
ky..ky—1
From now on we consider the following representation of the Yangigii,):
W=Voh®) ® Vo h®) @ - - ® Vsan (h™) (3.32)

where we assume that” — 1 ¢ Z for all r # s.
Let us setop(u) =1 and form = 1, ..., n let us define

M m

pm@) =[] —i+1+n) (3.33)
s=1i=1

and
() = P () A, (1) m=20,..., n (3.34)
b, () = p,, () B,, (1) m=1...,n—-1 (3.35)
() = 0y () C(u) m=1...,n—-1 (3.36)
dy, () = p,, () D, (1) m=1...,n—1 (3.37)

Thena,, (u), b, (u), c,,(u) andd, (1) are polynomials iru, and due to proposition 2 and
(3.16), they satisfy

[an (), bi(v)] =0 if 1 #m (3.38)
[en(), b;(v)] =0 if I £m (3.39)
[bw (), by(v)] = O if |/ —m|#£1 (3.40)
(u — v)[an W), by (V)] = by (U)an (V) — by (vV)an () (3.41)
(u — vV)[cn@), by ()] = dpW)ay,(v) — dy(v)a, (1) (3.42)
dpWa,(w+1) = api1(u + Day_1(u) — by, (w)e, (u + 1). (3.43)

Let us fix a set of Gelfand—Zetlin schemes
AY =il<i<m<n) eTwis=1...,M) (3.44)
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and define the following polynomials fat =0, ..., n.

M m
wm’A(l)’___’A(/m(M) = 1_[ (Lt + )\.,(7:?1 — l + 1 + h(s)). (345)
s=1i=1
Note that all the zeros of theth polynomial
v =i =AY 1" (3.46)

are pairwise distinct due to our assumption on the paramgtéts .., n*0,
For the pairs(m, m')(1 < m’ < m < n), we introduce the ordering,

m,m)<U1Nem <l or (m' =1 andm > [). (3.47)

Let vhyw € W be the vector, which is the tensor product of the highest-weight veom\r,s
of the Lie algebrgyl, (s =1,..., M). Then consider the following vector iW

VA, A = 1—[ < 1—[ b,,l(vlgf?m, — t)) Vhwy- (3.48)

(m,m’) (S),f)
1l

vl”’

Here for each fixedn the elementsam(vf,f’)m/ — 1) € EndW) commute because of relation
(3.40).
Then the following propositions are satisfied (see [23]).

Proposition 4 ([23]). For everym = 1, ..., n we have the equality
AGD. (3.49)

AM) = 0

Proposition 6 ([23]).1f A" € S, for everyr € {1, ..., M}, thenv,w _ pon # 0.
Proposition 7 ([23]). Y (gl,,)-module W is irreducible if2") — h®) ¢ Z for all r # s.
By propositions 4 and 6 and the fact that (W@, ..., AM) =% (AD ... AM)

(Vr, AV, AV € S;0) thendm st w,, ga . aon (1) # @,, iw_. i (u), one can show the
following.

.....

4. Yangian in the spin Calogero—Sutherland model

In this section we recall the definition of the Yangian action in the SCSM [4] and establish
some properties of this action—in particular the self-adjointness of the operators giving the
action of the Gelfand-Zetlin algebra (proposition 10).

Following [4] for k = + define the monodromy operatdi,*' (1) € EndC") ®
End(H)[[u~"]] by

R n R P P P
W= Eap® 15w = (1+ )(1+ )...(1+ )

i) u—Kkdq u— Kkdy u—kdy

(4.1)

the Py, in this definition is the permutation operator of the zeroth ahdensor factor€”
in the tensor product

¢ ®Clzit 23t ..., 1] ®C'®C'®- - ®C' =C'"®N. (4.2)



The orthogonal eigenbasis and norms of eigenvectors in the SCSIB695

The E, , € End(C") is the standard matrix unit in the basis } introduced before definition
(2.2). The operatord,")"® e End(H) obtained by expanding the monodromy matrix
%) (u):

T8 @) =8ap1+ Y u T, (4.3)

s=>1

satisfy the defining relations (3.1) of th&gl,). By using the relations of the degenerate
affine Hecke algebra (2.10)~(2.12) one can show [4] thatiifig" leave the subspace
H® invariant. We will set

T () == T, ) |3 € EndH ) [[u] (a,b=1,2,...,n). (4.4)

Denote the generating series which give the action of the Gelfand-Zetlin
algebra in the Yangian representation defined by the monodromy matrix (4.4) by
AP ), AP ), ..., A% (u). The A¥(u) is just the quantum determinant of g (u).
Hence

[AY ), T.) ()] = 0 (a,b=1,2,...,n). (4.5)
The explicit expression for the quantum determinant [4]:
N
+1—«d;
PICIA I ) it 4.6
Yo =TT = (4.6)

i=1
shows that the SCSM Hamiltonian (2.13) is an element in the centre of the Yangian action
and hence is an element in the Gelfand—Zetlin algebra.
Denote byO' the adjoint of an operato® e End(H) with respect to the scalar
product (-, -),, defined in section 2. FoO(u) = Y ou* 0 € EndH®)[[u1]] we
will write O (u)" := )" qu™" OWT.

Proposition 9.

i
TS ) =T, (u) (k= —,+). 4.7
Proof. By using lemma 1 to prove the proposition, it is sufficient to show that
i . @t (2
Ta(Kb’ (D T;Z) @ T;K,,) @f _ T}}(;) @ (4.8)
and
A W) = AP ). (4.9)

By using definition (4.4) and the same notation regarding the subscript 0 as in (4.1) we can
write

T(K) (D ZPOz
T3 ® = (ZKdPol+ > PO,P0,>

1<i<j<N

o (rams 2 xsom)

1<i<j<N H®

The Cherednik—Dunkl operators and the permutation operatoks ; (i, j =1,2,...,N)
are self-adjoint with respect to the scalar product (2.3). On the other hand, for any
x,y € ®VC" we have

(Po,ix ’ y>3 = ()C ’ f’)g)’,yA (410)
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where superscripty stands for the matrix transposition in the auxiliary spéte (4.1).
Using the definitions of the scalar products (2.4) and),, we obtain (4.8).

Then (4.9) follows from the explicit expression for the quantum determinant (4.6) and
the self-adjointness of the Cherednik—Dunkl operators with respect to the scalar product
(2.4). O

By using this proposition we can now establish the main result of this section.
Proposition 10.
AY@ =AY BYw =P cWw =BYw ==
(4.12)
Proof. Since in the following proof it is immaterial whether we are dealing with the

fermionic or bosonic case, we will suppress the supersc(ipts
In [21], the proof of the following relations can be found:

T Ty —1) T o (w—m+DEP EP . E™ (H,®1)

i1,ja "2, jo * Ums Jm
1 2 m
= (Hy, ® 1)E,.(L>_,.1E§23,.2 . E”] Ty @ —m41) - Thy (e — DT, ().
(4.12)

Relations (4.12) are satisfied in E@)®” ® Y (gl,)[[u~]], and H,, € End(C*)®" is the
asymmetrization map. By comparing the coefficientadP. E®. ... E™. | we obtain

1.1 2,2 imsJm?
Z (_1)I(G)Ti1~,ja(1) ) Tig oy = 1) -+ - T, iy 4 —m + 1)
0e6,
= > YOT, G w—m D) Ty = DTy W) (4.13)
e,

Then if we take the adjoint, we have

;
( Z (_1)](0) I‘ilsjn(l) (u)n2~ja(2) (l/l - 1) U ’I}msjn(m) (u —m + 1)>
eSS,

= Y DT W T =1 T i (= m + 1), (4.14)

oeB,,

If we put (i1,...in) = A, ....,m),(1,...jm) = (1,...,m), we obtain A, u)! =
A,@), and if we put(is,...in) = A ....m), (o, ojm) = A, ....om — Lm +
Dresplis,...im) =@, ...,m—=1,m+1), (j1,...jn) = (1, ..., m)), we obtainB,, (u)" =
Cm(“)(resp Cm(l't)T = Bm(“)) O

In section 7 we will see that the operator coefficients generated(lﬁym, ey AW (u)
are simultaneously diagonalizable#{<), and that their joint spectrum is multiplicity free.
SinceA(lk)(u), ..., A% (u) are self-adjoint this implies that their common eigenvectors are
mutually orthogonal with respect to the scalar prodict) ,,. Our main problem in this
paper is to describe these eigenvectors and to compute their norms.

5. Decomposition of the space of states into irreducible Yangian submodules

In this section we construct the decomposition of the space of states of SCSM into irreducible
submodules of the Yangian action. The procedure we follow is the one suggested in [4],
it is based on the diagonalization of the Cherednik—Dunkl operators. The eigenvectors of
the Cherednik—Dunkl operators, known as non-symmetric Jack polynomials, are reviewed
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in the section 5.1. In section 5.2 we describe the decomposition of the space of states
H) in the fermionic model, the main result here is theorem 1. In section 5.3 we give the
decomposition in the bosonic case.

5.1. Non-symmetric Jack polynomials

In this section we consider the Cherednik—Dunkl operators (2.9) as acting in
(C[zfl, zfl,...,zﬁl]. For « > 0 the Cherednik—Dunkl operators are simultaneously
diagonalizable. Their common eigenvectors form a bas€[uf?, z37, ...,z and are
sometimes called non-symmetric Jack polynomials. Here we will review some of the
properties of these polynomials.

First we describe the labelling of the eigenvectors which will be convenient in the proofs
of the statements we are going to make later. M, := {(m1, mo, ..., my) € ZN|my >
my > ... > my} be the set of partitions which may have negative parts. There is a right
action of the symmetric grou@, in Z". For

o= (a(l) o2 - o(N)) € Gy
and(ny, no, ..., ny) € ZV it is defined by

o(ny,ng,...,nN) = (Ne), o), - -+ Ro(N))- (5.1)
For anm € My we define the subset™ in Gy by

ocesS™ (5.2)

iff forall 1 <i < No (i) = #{] < i|mg(j) > mg(i)} +#{] > ilmg(j) > mg(,-)}. Let le C
Gy be the subgroup leavingn invariant. ThenS™ intersects each of the right cosets of
G in Gy at precisely one element, and the correspondence bet§féend the set of all
distinct rearrangements of given by

ceS" > om= (m(,(]_), Mg2), - m(,(N)) (53)
is bijective.
Some of the properties of the s&t* are summarized as follows:
if o € S™ theno(i,i +1) € S™ iff M (i) #* Mg (i+1)- (54)
if o € S™ thenl(a)( = Ze(a(i) > o(j))) = Ze(mg(;) < Mo(j)) (5.5)

i<j i<j

Yo €S, o * id3(,i + 1) such thaf”lg(,') < Mg (i+1) andl(o(i,i +1) =1(c) — 1.
(5.6)

Here in the definition of the length(c) we used the conventioa(x) = 1 if x is true,
0(x) =0 if x is false.
In the setS™ we introduce the total ordering by setting

o>o (5.7)

iff the last non-zero element iGny )y — Mor1y, Mo@ — Mo/ 2)s - - - » Mov)y — Mo vy) 1S <O.
Notice that the identity inSy is the maximal element is™ in this ordering. Then in the
set of pairs(m, o)(m € My, o € §™) the partial ordering is defined by

m>m or
(5.8)

m=m o >0

(m,o) > (M, o) iff {
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wherem > m means thatn is greater thamn in the dominance (natural) ordering ¥ v
[19].

The eigenvector®*(z) € C[zl ,z2 ,...,zﬁl] of the Cherednik—Dunkl operators are
labelled by the pairgm, o)(m € My, o € §™) and satisfy the following properties:
CDT(z) = zT"(l’Z;"‘Z) . Z;G”(N’ + Z Clmeoy: . U)ZTa(l)Z;ﬂa(z) . Z”Nﬁmm (5.9)

(m,6)<(m,o)

di®T(z) =M ()P (2) where&™ (o) 1= amqyi) — o (i) i=12...,N)

(5.10)
Kiiy1®)"(2) = A" (0) D] (2) + B (0) @ ;11)(2) (5.11)
where
A (o) = ;
' §"(o) — &1 (0)
m m 2
(§™(0) = &21(0)) L e > o)
Blm(o_) — (é,m(o') - Si"jl(d)) (5.12)
0 Moy = Meo(it1)
1 Mgy < Mo(it1))-

Notice that foro € S™ we haveo (i +1) = o (i) + 1 whenevern, ;) = mq 11y, and hence
in this case (5.11) and (5.12) give

Kii1®7'(2) = ®7'(2) (Mg i) = Mo(it1))- (5.13)
Fora > 0, the set ofN eigenvalues&[(0), £5%(0), ..., &' (0)) determines the pair

(m, o) uniquely. Since the Cherednik—Dunkl operators are self-adjoint with respect to the
scalar product-, -).. (2.3), this implies that the eigenvecteb§*(z) are mutually orthogonal:

(D7(2), D)), = Smndor DT ()2 (5.14)

Their norms||®™(z)||? have been computed in [24] and for tgedeformed situation in
[17, 8]. The product formulae for the nornfi®7 (z)||? will be used in section 6 to derive
product formulae for the norms of the Yanglan highest-weight vectors.

5.2. Irreducible decomposition of the space of states with respect to the Yangian action.
Fermionic case

In this section we describe the decomposition of the space of states in the fermionic SCSM:
H) into irreducible subrepresentations with respect tolig,)-action (4.4)(x = —).
Let E™ := @resmCP(2) (M € My); and let

me— (E™Q @VC") NH. (5.15)
Then (5.10) implies that the spaé&® is invariant with respect to the Yangian action defined
by (4. 4) withx = —. And since the polynomial®?*(z) (m € My, o € §™) form a base
in Clzi ™t 250 ..., le] we have
HO= @ F™ (5.16)
mEMN

Expression (4.6)d = —) implies that, unles™ = @, F™ is an eigenspace of the quantum
determinant with the eigenvalue

1_[ u+ 14 £m(id)

5.17
u+ &M (id) (5-17)

i=1
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and hence is an eigenspace of the Hamiltorfidn’ (2.13).
To describe each of the componet® explicitly we need to make several definitions.
Let W, C @"C" (m € My) be defined by

= N Ker(P; ;i1 + 1). (5.18)

1<i<NStn;=m; 1

Note that dimiw™ = 0 unlessm € My, where

MW = (m e My |[#mm; =i} <n(i € 7)) (5.19)
Forp € {1,2,...,n} let & be the highest weight of the fundamengg)-module:
Ar=(1,...,1,00,...,0 1< p<n). (5.20)
P n—p

For a highest weight of this form antl € C denote the corresponding(gl,)-module
Vi.(h) (see section 3.2) by, (h). As a linear space th&,(h) is realized as the totally
asymmetrized tensor product Gf:

Vo) =N Ker(Piyi+D)  C ®C (A<p<n) (5.21)
with normalization chosen so that tigé, highest-weight vector iV, (k) is
wp = Z (—1)1(0)%(1) R Us2) ® - ® Vg(p)- (5.22)
0eq,

For anm € M)’ let M be the number of distinct elements in the sequence
m = (my, mo,...,my).
Andletp, A< ps <n,s =12, ..., M) be the multiplicities of the elements im:
mp=mz=--"=Mp > Miyp =M2p, =" =Mpyyp > "> Mifpy s4tprtps

= M2t pyattpetpr = 0 = Mpyttpotpr=N-

(5.23)
With &™ := &™(id) (5.10) set
R =& bt (po:=0,5s=1,2....M). (5.24)
Then for the linear spac# ™, (5.18) we have

¥ (n)
W — { Vo (hig) @ Vi (h2) © -+~ ® Vp, (i) c ®YC" whenm e MYy (5.25)

] whenm ¢ M
Whenm e My’ the W™ is the Yangian module with the Yangian action defined by

coproduct (3.30). 5
For anyo € S™ (5.2) defineR™) (o) € End(®"C") by the following recursion relation

RO(id) =1 (5.26)
RO, i+ D) = —Rii11E™0) —&HOIRT(©0)  (mew > mogyn)  (5:27)
where theR-matrix is given by

Rijra(w) = u™t+ Piji1. (5.28)
Due to the property (5.6) of the s&t* this recursion relation is sufficient to defifié) (o)

for all o € S™. The definition of R (o) is unambiguous by virtue of the Yang—Baxter
equation satisfied by thR-matrix (5.28).
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Form e My define the ma@/™ : @"C" — 'H by setting forv € @"C"

UMvi= Y ®T() @R (o). (5.29)
oes™m
Theorem 1For anym € My we have
ury - wke Fm. (5.30)
And ur, is an isomorphism of théf(g[n)-modulesW("j) and F™.

The proof of this theorem is given in appendix A.
This theorem will allow us to use the results of [23] described in section 3 in order
to construct inF™ the eigenbasis of the algebr(gl,) generated by the coefficients of

the seriesA{” (), A5 (), ..., AC)(u). For now let us notice that from this theorem it
follows that the Yangian highest-weight vectaf,’ in F™ is given by
Q) = Ulom =) 97@ @R (0)om (5.31)
oes™

where thew,, is the highest-weight vector iW(”j):
Om = Wp, @ Wp, @ -+ - @ wp,,. (5.32)

From corollary 3.9 in [23] it follows that the moduleg™ are irreducible ifa ¢ Q
since in this case in (5.25) we hakf) — h{") & 7 whens # r. By using results of [1] we
can verify, that theF"™ are irreducible under the weaker conditiane R \ Q<o. The key
statements of [1] which are used to come to this conclusion are:

e V,,(h) ® V,,(h?) is irreducible iff the Y (gl,)-intertwiner Rz : V, (h?Y) ®
Vy,(h?) - V,,(h?) ® V,, (h™) and the inverse intertwinek,; have no poles;

¢ V,,(h) ® V,,(h?) ® --- ®@ V,,, (h™) is irreducible iff V,, (1) & V, (h¥) is
irreducible for all 1< r <s < M.

5.3. Irreducible decomposition of the space of states with respect to the Yangian action.
Bosonic case

The decomposition of the space of states of the bosonic SG8M:into irreducible sub-
representations with respect to thégl,)-action (4.4)(x = +) is carried out along the same
lines as the one for the fermionic case.

Let for m € My the E™ be defined as in the previous section; and let

B™ = (E™® (@"C") NH™. (5.33)

Then (5.10) implies that the spaB&” is invariant with respect to the Yangian action defined
by (4.4) withx = +; and since the polynomial®’*(z) (m € My, o € §™) form a base
in Clz3, 23, ..., 25 we have

HD — @ B™. (5.34)
mEMN
To describe each of the compone®¥ explicitly we make several definitions analogous
to those made in the previous section.

Let W7, C ®"C" (m € My) be defined by

win= (] Ker(P—1. (5.35)

1<i<Nstni=m;1
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Forp =1 2,... let A be the followinggl, highest weight:

A= (p,0,0,...,0. (5.36)
e e’
n—1
For a highest weight of this form anl € C denote the corresponding(gl,)-module

Vi.(h) (see section 3.2) by ”(h). As a linear space th&?(h) is realized as the totally
symmetrized tensor product @f*:

VP(h) = NP Ker(Pr1 — 1) € @PC" (p=12..). (5.37)

We choose normalization so that the highest-weight vectdf,iit) is equal tOUf""

As in the fermionic case, for am € My let M be the number of distinct elements in
the sequencen = (mq, mo, ..., my). And let p,(s = 1, 2, ..., M) be the multiplicities of
the elements in then:

mp=mz=--=Mp >Mitp =M2ppy =+ =Mpyipy > > Mitpy 1+ +prtps
= M2 py st tpatpr = = Mpytetprtpi=N- (5.38)
With £™ := g™ (id) (5.10) set
R = =& ps (po:=0, s=1,2,..., M). (5.39)
Then for the linear spac#, (5.35) we have
W = VihE) @ V@) ®@ - @ V(i) c @V C" (meMy).  (5.40)
The WP, is the Yangian module with the Yangian action defined by coproduct (3.30).

For anyo € S™ (5.2) defineR™ (o) € End®~ C") by the following recursion relation
RO (id) =1 (5.41)
RO (o, i+ 1) i= Rija(—E"(0) + @R (@) (o) > morn)  (5.42)
where theR-matrix R; ;1 (x) is given by (5.28).

As in the fermionic case, due to the property (5.6) of theSgetthis recursion relation
is sufficient to defineR™ (o) for all & € S™. The definition ofR™ (¢) is unambiguous

by virtue of the Yang—Baxter equation satisfied by fhnatrix (5.28).
Form € My define the ma@/[}, : ®"C" — 'H by setting forv € @"C"

Ulhv =Y &) @ RP (o). (5.43)

oesSm

Theorem 2For anym € My we have

ury Wiy — B™. (5.44)
And ur, is an isomorphism of théf(g[n)-modulesW(’j;) and B™.

We omit the proof of this theorem since it is a straightforward modification of the proof
of the theorem 1 given in appendix A. From this theorem it follows that the Yangian
highest-weight vectof2{t) in B™ is given by
Qb =umed = > el ® RM (o) v®V, (5.45)
oesS™m
Theorem 2 will allow us to use the results of [23], summarized in section 3, in order to

construct inB™ the eigenbasis of the algebragl,) generated by the coefficients of the
seriesA{” (), ASY ), ..., AS ().
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6. Norms of the highest-weight vectors in the irreducible Yangian submodules

6.1. The fermionic case

In this section we will compute the norni®( , Q) _, of the highest-weight vectors in
each of the irreducible submodul&g® (m e M).

Let us fix anm € ME\’,'). In this section and later on we will use the notations (5.23),
(5.24). Let®d™(z) := ®{{'(z). Consider the vector

AL (@™(2) @ W) (6.1)

wherte}V_) is the asymmetrization operator (2.8). Due to (5.11) and the definition of the
spaceF™ (5.15) we have
A (@™ (2) ® W) € F™ (6.2)

and comparing thgl,-weights of the vector (6.1) witk(,’ we find that these vectors are
proportional:

A (™) @ 0m) = c(mM)Q,)  (c(m) eR). (6.3)
Now we observe that from the self-adjointness of the elementary permutaltfg@:

Kiii1, P:l. 41 = Piiy1 with respect to the scalar product (2.4) it follows that the

asymmetrization operator is self-adjoint as well:
i -
A, = A, (6.4)
Therefore we can write
(@A (D™ (2) ® W), A (P™(2) ® Wm)) = NHO™(2) ® 0 » A (D™ (2) ® wrm))
= Nle(m)(®™(2) ® wm , QL)

and by formula (5.31) and the orthogonality of the polynomiaJ8(z) with respect to the
scalar product (2.3):

(AL (@™ (2) ® wm) , AL (@™ (2) ® wm)) = c(M)XQL,), Q) (6.5)
= Nle(m)(wm , ©m) (P (2), D" (2)).. (6.6)
Using (5.32), (5.22) to compute the noff@,, , w,), we obtain:

M
1
) o=y 1l m
(2., Q,, >(—) Nl(J_ll ps-I)C( )((I) (), 2" (2)),- (6.7)

The norms(®™(z), ®™(z)), are known, and can be found in [24, 8,17]. For completeness
we will give a derivation of these norms later in this section. For now we will proceed to
compute the coefficient(m).

Writing
A (@R Qom) = Y PRV, (Y, € VT (6.8)
oes™
and (5.31)
Q)= or@) QRO (0)wm (6.9)
oes™

from (6.3) we obtain
Yo = (MR (0) o, (o € §™). (6.10)
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Lets € S™ be the unique element of maximal lendth) (5.5) in the setS™. This element
corresponds to the antidominant rearrangement of the parts in the partition

msay < Mg2) < - < Ma(N)- (6.11)
We will find the coefficient:(m) from (6.10) by comparing the vectgr; with R (5)wp,.

First we compute they;. Let 8 C Gy be the subgroup preserving the partition
Then

A (@) @om) = Y (DK, P Y (D)'VK PO (2) @ o (6.12)

oes™ TeGy

and from (5.13), (5.32), (5.22)

M
A (O™ (2) @ ) = (]‘[ p.y!) Y D OK PO () @ 0. (6.13)
s=1

ocesSm

Lemma 2.For any element € S™ we have
Ko @™ (2) = k™ (0) P (2) + Yo V0.0 () (6.14)

o'eSmsi (o)<l (o)
wherev™(o, 0’), k™ (0) € R and(5.12)
k™ (o (i,i + 1)) = B (o)™ (o) (Mo @iy > Moi+1))- (6.15)
Proof. We prove the lemma by induction in the length of element§’th Foro = id the
(6.14) trivially holds with«™(id) = 1. Fix ac € S™ and assume that (6.14) is true for

all elements of lengths less or equalite’) — 1. Then by the property (5.6§i,i + 1) and
6 € §™ exist such that =6 (i,i + 1), ms) > ms 41 andl(6) = I(o) — 1. By writing

K, @"(z) = K i11K5 P™ (2) (6.16)
by the inductive assumption and (5.11) we obtain the desired statement. O

Since thes is the element of maximal length i6™ from this lemma and (6.13) we
find

M M
Vs = <—1>“('”(1"[ m!)x’”(a)P&wm = (—1>“5>(1"[ ps!)x"%&)wm (6.17)
s=1 s=1
where
Om = Pswp, @wp, @+ @ wp,, = Wp, QWp, , Q-+ Qwp,. (6.18)

Now solving the recursion relation (6.15) with the initial conditieft(id) = 1 we obtain

. (%-im_%-jm)Z_l he _ p@ _ s hG) _ p© ;
TSI G il it N, QS RS EY)

— = 5 . (6.19)
1<i<j<N " —§ )2 1<s<t<M (h$y) — RS () — &) + Dt — Ds)
On the other hand, by using the recursion relation (5.27) we obtain
RO (6w = (—1)“")( ]_[ as.,(h®) — h;’g))a)m (6.20)
1<s<t<M
where
X+ p

Hi_t (ps < po)
s (x) == x+g Ps (6.21)

' (ps = po).

X



3704 K Takemura and D Uglov

Hence introducing

pmyi= ([T puati = hi) (6.22)
1<s<t<M
X
X—p (P.s* < pr)
Psi(X) 1=y 4 Pt — s (6.23)
—_— (ps 2 p1)
X — Ds

We find from (6.19) and (6.21) that
= o) —— 6.24
e(m) (l"{p ) (6.24)
and
Q- szg,;>>(7) = Nlp(m)(®™(z), P™(2)),. (6.25)

Proposition 11.For m € My we have(&™ .= am; —i):

1 P(EE ) (T - L)
(®™(2), P™(2)), = N 1<i1<_.i[<N {F (5’" 54 1)}

or, equivalently, in notations (5.23), (5.24):

1/ T (2+1)
(@™(2), " (2)), = ( “)
vl ey
I (hﬁl h® Ty l) ( m;h;:g _ % + 1)
X . 6.27
AL (e () ©:27)

Proof. To prove the proposition we will use the known formula for the norms of symmetric
Jack polynomials. The Jack polynomiBf® (z) [19] is the unique symmetric vector in the
SpaceE™ = @,esmCOM(z) (m € My) normalized so that in the expansion

(6.26)

PW(z)= Y v™0)0r(2) (™(0) € R) (6.28)
oelSm
the coefficientv™(id) is equal to 1. The symmetry conditions
K;i11P®(z) = P(2) (i=12..,N-1 (6.29)

together with formulae (5.11), (5.12) give the recursion relation
V(0@ i +1)=1-A0)v™(0)
_§Mo) =) -1
éim(U) §,+1( o)
Solving this relation with the initial condition™(id) = 1 gives

(o) (Mg > Mo(it1). (6.30)

m m
m_gm _ |
1Si<j<N § _Ej

wheregs is the element of maximal length in the sgt (6.11).
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Let Symny = } ., Ko be the symmetrization operator Blzit 2370 ..z
Then
Symmy, ®™(z) = d(m) P () (d(m) € R). (6.32)
Writing
Symmy@™(z) = Y K, Y K:®™() (6.33)
oesm  te®T

and using (5.13) and the result of lemma 2 we obtain

M
Symmy, ™ (z) = (Hps!)xm@@?(zw Y 0@ (@) eR) (634
s=1 oes™
o#G

wherex™ (o) is given by (6.19). Comparing the last equation with (6.28) gives for the
coefficientd(m) in (6.32):

M Km((;’) ‘,;_-im _ gjm. + 1
d(m) = N g S iy 6.35
( ) (EP )vm(o,) 1_[ é-im_%-jm, ( )

1<i<j<N

Now the self-adjointness of the symmetrization operator with respect to the scalar
product (2.3) yields

1
(@7 (@), D@ = d(m)(P9(z), P\ (2)).. (6.36)

Using the expression [19, ch VI-10.38]:

r(TF e (- )
(PG PP = []

m_gm m_gm (glm = am; — i)
1<i<j<N r (é i + 1) r (%)
(6.37)
and (6.35) we obtain (6.26). Formula (6.27) follows from (6.26) by using the notations
(5.23) and (5.24). O

Now, by combining the result of proposition 11 and formula (6.25) we obtain the main
result of this section.

Proposition 12.For m € M\’ we have

(2 +1)

© QO
(2, 2y (>1_[ re+y)”

(s) ](I) he) _p©
P (M g (R )

o

x (0

1<s<tsm T (hm_h'” + 2B 4 0(ps < )) I (% +0(ps > Pt))
(6.38)
where

1 whenx is true
0(x) := (6.39)

0 whenx is false.
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6.2. The norm of the ground state in the fermionic case

“o, Of the fermionic SCSM is identified with the highest-weight

vector in the Yangian subrepresentatib“ﬁ‘O(N) where the ground-state partitiom®(N)
is described as follows. For a given number of particlas, let L € {0} UN and
g €{0,1,...,n — 1} be defined byN =nL + g. Then

(L (L =D (D" O (@ #0
(L-=D"L-2" - (D" (¢=0

The ground stateR

mOo(N) = { (6.40)

where we used the usual conventio@t)” = a,a,...,a. The ground stat®') . has
————— mO(N)

r

degeneracy equal to diFm’ ™) = (Z)

One expression foQ("‘Lg(N) is given by formula (5.31). For the special case of the

ground-state partitiomn®(N) this expression can be simplified by taking into account the
triangularity of the non-symmetric Jack polynomials (5.9). This gives

_ om0 m0 mo
ang(zv) =A@ V™MV (e @ U UYL ® - ®,).

(6.41)
Let us introduce the Laurent polynomiafslo(,v)(zl, 22, ..., zy) and fron (21, 22, . ., ZN)
by
B q
Smowy (21, 22, .., 2ZN) = l_[ < l_[ (zi — Zj))
e=1 \ (e—1)(L+1)<i<j<e(L+1)
X 1_[ ( l—[ (zi _Zj)>
e=q+1 “g+(e—1)L<i<j<g+eL
and
N ~
( Zi)me(N) (21,22, .-+, 2N) (g #0
Smowy (21, 22, .., 2N) = i=q(L+1)+1
Fomow) (215225 - -5 ZN) (g =0).
And let the sequencé?, €3, ..., €%) be defined as follows:
1L+12L+1“. L+1 +1L"'I’ZL 0
(€ 0y ( )L (L) L(q) (g+1 (n) (q #0) (6.42)
D@ - (n) (g =0).
Then up to a sign the ground sta® ), can be represented as
Z(_l)l(a)fmo(N)(Za(l)» 252 -+ Zo(N)) @ (UeS(l) ® Ve, Q- ® Ufgm)) (6.43)

where the sum is taken over all permutations such that the corresponding sequences
(€21): €22y - - - » €2y are all distinct.
Using this presentation we can write the norm of the ground state as
N!
&)~ {(L+ Dlye{Llye
X fmon) (21, 225 -5 ZN) 5 fmon) (225 225 - -+ 5 ZN))- (6.44)

=) =)
(QmO(N) ’ QMO(N)>
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By definition (2.3) of the scalar product on the space of Laurent polynomials we can now
recast the statement of proposition 12 for the case of the ground state as the following
integral formula

1 N dw;
Q) t) _ f !
hmo+ Smoon) o) = (L 1ypeqLiye 11 =1 27 /= Tw;

2 Fr(E+DL+2+1
X]_[|wi_wj|§|fm°(N)(wlv wa, ..., wy)|* = ( 1 1)\,
i<j LI +DIT (5 +1)
(6.45)

6.3. The bosonic case

The computation of the norms of the Yangian highest-weight vectors in the bosonic case is
much simpler than that in the fermionic case. From equation (5.45) and the definition of
the Jack polynomial we immediately find

Q) =PY) @ wdY) (m € My). (6.46)
Hence the norm of the highest-weight vector is given by
Q0 Q) ) = (PR(2), PR @), (6.47)

where the norm P (z), P\¥)(z)), of the Jack polynomial is given by formula (6.37).

7. Eigenbases of the Gelfand—Zetlin algebra in the irreducible Yangian submodules
and norms of the eigenvectors

In this section we construct eigenbases of the operator-valued seri@:{u),
AL (), ..., A% () within each of the irreducible (gl,)-submodulesF™ (m e M)
(k = —1—fermionic case) an@™(m € My) (x = 1—bosonic case), and compute norms
of the eigenvectors that form these eigenbases.

Due to the isomorphisms given by theorems 1 and 2 the construction of the eigenbases
is carried out by a straightforward application of the results of Nazarov and Tarasov that
are summarized in section 3.

Let us fix a partitionm = (mq, my, ..., my) € My and let fork = —1m € MY c
My. As in section 5 associate witle the following data:
M—the number of distinct elements in the sequemee= (my, mo,...,my); ps (s =
1,2,..., M)—the multiplicities of the elements in the::
my=mp=--+=Mp > Miyp =M2p = "+ =Mppp > "> Mippy 14tprtp
= M2t py at-tprtpr = 0 = Mpy+tprtpi=N- (7.1)
Since in the fermionic case the partition is restricted:e MW we havep, € {1,2,...,n}

(s=12...,M)whenx = —1.
With £ := §™(id) = am; —i (5.10) set

hY) = (po:=0, s=1,2...,M). (7.2)

Forpe{l,2,...,n}let SI(;) denote the set of all Gelfand—Zetlin schenmfeghat are
associated with the irreduciblg,-module with the highest weight (cf section 3)
1,1,...,1,0,0,...,0). (7.3)

p n—p

m
_K§1+p1+P2+”'+Px—l
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An element ofS[(ﬁ is an array of the form

A g geceeeeeennneees Ann
Apdg-ceee- R
....... (7.4)
A2,1222
ALl
where
G ts Am 2+ oy dmm) = (1,1,...,1,0,0,...,0) m=12....n)
— N — —
I m—l,
=P (7.5)
and either

by =lpsr O Ly=lpi—1  (m=212...n-1. (7.6

For p € N let S{" denote the set of all Gelfand-Zetlin schemes= \&, ' /nzm>m'>1
that are associated with the irreducilgle-module with the highest weight (cf section 3)

(p.0,0,...,0). 7.7)
—_————
n—1
An element ofSI(,“ is a Gelfand—Zetlin scheme of the form
P PR 0
an710 ...... 0
....... (7.8)
0520
oy
where
Ay < Oyt m=12....,n—1) o, = p. (7.9)

Now let us define the following operator-valued series.
For the bosonic case set

By — A B — R
a”w)=A"(u b (u) =B " (u
(1) m (W) (1) (L) (7.10)
cSPw) =P ) dSP ) = DO (u).
And for the fermionic case set
ay () = Aw)A (u) b (u) = Aw)BS (u) (7.11)
) = AWC @) dSw) = Aw)DS (u) '
where A(u) = l_L-N:l(” +d;). Then from proposition 10 it follows that
a’ )" = a' (u) b® )t = ¢ (u) ¢ ) = b (u) kK=— 4. (7.12)
For a collection of Gelfand—Zetlin schemes®, ..., AM such thatA® e S;,’j)
(s =1,2,..., M) define the following vector (cf section 3):
vao o = [ ( [T 0o, - r))ﬂi,? (7.13)
(m,m’) (s,t)
1@@5” _)L(A) ,

’l.III, m.,m

F™ (k =-)
()
Vpa aon € { g™ =1 (7.14)
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Here

V) @

m,m’ m,m’

—1-h (7.15)
and then(s) are defined by (7.2). From proposition 8 and theorems 1 and 2 it follows that
the set

P AV eSY (s=1.2.... M)} (7.16)
is a base of(resp B™) whenx = —(resp+). Due to proposition 4 this is an eigenbase
of the operators generating the Gelfand—Zetlin algebra:

AS,I,()(M) UX{()I) ..... AOGD = A;:)(U; m)ro,..., A(M)UXC()DW,A(M) (m=1,2,...,n) (7.17)

u+1+hs)
ol 71 i Ry oy
Mou+hS)
s=1 u+h£§l)

Since (®)*(z) , 7 (z)). = 0 whenm # n, the subspaces™ (resp B™) are pairwise
orthogonal.

For > 0 one can verify, that the data € My, (AP, A® ..., AM)(AW € §1)
are uniquely restored from the collection of rational functions ‘

A (w; m) g aon. (7.20)

That is the joint spectrum of eigenvalues of the Gelfand—Zetlin algebra is simple. Since
A% (u) are self-adjoint, we obtain the following.

AV e8)  (7.18)

(AW e 8P). (7.19)

..... aons A s m)awaons . A s m) g

Proposition 13.Form € Mﬁ\'})(respm € My) the set

P AV €8P =1.2,.... M)} (7.21)
with « = — (resp.« = +) is an orthogonal base @f™(resp B™).

Proposition 14. Bosonic caséetm € My andA® € S{V(s = 1,2,..., M). If we write
a Gelfand—Zetlin schema® as in (7.8):

(7.22)

then the norm of the vectar\?)

+) +)

—_o® o
{(Vyw . aon» Yy A(M)>(+) = (5, an))(ﬂ

,,,,

% 1—[ { 1—[ (“z(f)_“sz))!(“r(zS)_“;f)—l)!(a:(qf)!)z

) (s) )|(a(s)|)2
HCPRE

1<m<n L 1<s<M (Otm Otm—l

X{ 0 l_Il (—a+al +hS) — B (=1 —a+ ol +hG) — hG) }
(—1—a+hp' —hi)?

’ )
(5,8) a=a

s#s
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@) —a® 4 pS) — B
x 1_[ ( ’(ls (A) (s") ?&1))}
oo +hm — hm)
wherehs) are defined by (7.2) witk = +.
Fermionic case. Let m € M\’ and A® € S = 1,2,...,M). As in (7.5)
define!¥ associated with the Gelfand—Zetlin schemé&’ by the condltlonsk( )IM =1

andA®

., = 0. Then the norm of the vectar ) ., is

(U5\_<1)> A(M)svj\_u)) A(M)>( 5 <Q( ) Q( ) { 1_[ l_[ (m' —l)' (ps+1— m)'z}

1<ssM (m,m')

Kot Pt
Ps ,
AT T [Tlor=i-2en -y
(s,s/) (m,m") j=0
s<s' A(‘) £ (‘)
)L(” J#EN (:)

n.m’

Py
<[ —j—1+ns) - hﬁj;))z}[(h;? - hﬁ;’))“]l}

j=0
Ds
x{ IT 11 [(m’ — 1+ 0y = [ Jon' = j - 1+n8) —hﬁfl))z}
(s,5") (m,m") j=0
s#sT O

m,m’ n.m’

)L(V) )\(: )

n.m’

x[(m' =1 =10+ hS) — KON’ — 1 =18 + h&) — hS))
x(m' =15, + %) — hgjg)]—l}

whereh(s) are defined by (7.2) witk = —. In these product formulaeands’ range from
ltoM (7 1) and(m,m’) (n > m > m’ > 1) are coordinates of points in a Gelfand—Zeltin
scheme ofyl,. We give the proof in appendix B.

Remark If « > 0 we can confirm directly that the norms of the previous proposition
are positive. The key points are as follows. For the bosonic case, 4 s’ then
h“” —h® > p,, ¥ < p,. For the fermionic case, if < s’ thenh®) — h® < —p; 1<

<pss 1Y) < s

Together with proposition 12 and formula (6.47) this proposition gives the norm
formulae for the orthogonal eigenbasis of the SCSM.

8. Concluding remarks

In this paper we have constructed an orthogonal basis of eigenvectors for the SCSM and
have derived product formulae for their norms. Our construction is based on the Gelfand—
Zetlin algebra associated with the Yangian symmetry of the model. It is now natural to
ask: what other properties of the eigenvectors are described in this paper? What we have
in mind is exemplified by the scalar case, where the orthogonal eigenvectors are described
by the symmetric Jack polynomials. For the Jack polynomials a number of properties such
as triangularity, Cauchy formulae, duality, existence of associated symmetric functions etc
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are known [19, 25]. We believe that most of these properties have their counterparts for the
Calogero—Sutherland model with spin, we plan to report on this subject in the future.

Appendix A. Proof of theorem 1

Recall that form € My the subspacéV™, C ®NC" was defined in (5.18) as follows:
Wr =[] Ker(Puji+1 (A1)
iimp=mjy1
and that from this definition it follows, in particular, that the dimension of W& is zero
unlessm e MY’ where the set ) is defined in (5.19).
Proposition 15.If f € W™ thenU™ f € F™, and the magy", : f — U™ f is an
isomorphism of the linear spacég™, and F™.
Proof. For an arbitraryy € E™ @ (®VC") we write
=) TV, (A.2)
oesS™m
where the componentg, € ®"VC" are uniquely determined by. We havey € F™ if
and only if
K[,i+1w = _Pi,[+1'l// (l == 1, 2, ey N - 1) (A3)
By virtue of (5.11), (5.12) and the linear independencedgf(z) equations (A.3) are
equivalent to
(Piiv1+ Dy, = O(mg(i) = ma(,qu)) (forallc e S"andi =1,2,...,N -1 (A4)

—Rii41(X) ¥y Mgy > Mea(it1))
Vo(iitl) = X2 . x =§"(0) — &1 (0).
— 5 Riita(x) ¥, (Mg @iy < Mo(i+1))
x¢—-1
(A.5)

Notice that the second equation (the casg;, < mqi+1)) in (A.5) is not independent but
follows from the first one (the case, ) > my+1))-
For anyo € S™ define a sefl., whose elements are sdt$, };csm (¥, € @VC"). We
will say that{y,}.csm € L, if and only if the following relations are satisfied
(Piivi+ D¢, =0 (for all istm, iy = mo(iv1) (A.6)

and forallt e S"andi =1,2,...,.N -1

—Ri i 1(X) ¥, (Mmey > Mei1)
1//r(i,H-l) = x2 X = §;m(f) - S;Tl(f)~
- Riit1() Y (Mmeiy < M)
x¢-1
(A7)
With this definition we have
Y e F™ & (A4), (A5) & (Yoloesm € [ Lo (A.8)
oesS™m
Lemma 3.
m L, = L. (A.9)

oes™m
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Proof. We will prove that for any € §™, o < id the inclusion

{WT}‘L’ES"’ S ﬂ La’ (A].O)
implies
{WT}IES'" € Lo’~ (All)
Then, since id is the maximal element$f*, induction of the order of™ will give
Lac () Lo (A.12)
oesS™

and the statement of the lemma will follow.

Fix ao € §™,0 < id and assume that (A.10) holds. For atiye S™,0 < id,i €
{1,2,..., N — 1} exists such thaii,;, < mi+1) (otherwisec must be equal to id).

With thisi leto’ :=o(i,i + 1). Thens’ € ™, and by the definition of the ordering
in S™ (5.7) we haver’ > o.

Now take any;j € {1,2,..., N — 1} such thatn,, = ms+1. If such a;j does not
exist, the implication (A.1p= (A.11) is obvious.

The following three situations may take place:

D lj—il =2 (A.13)
2 j=i+1 (A.14)
©)] j=i—-1 (A.15)
If (1) holds, thervny ;) = my(j+1), and by the assumption
{WT}TEST" € ﬂ LU’ (AlG)
we have
(Pjj+1+ Do =0. (A.17)

Relations (A.7) give
2

Yo = Riit1(0) Vs (R,»,m(x) = —xzx—_léi,iﬂ(x), x=§"0) - s,-'ﬁl(o)> :
(A.18)
And hence
(Pjjr1+ Dy, =0 (A.19)

becauser := £ (o) — £ (0) = a(moi) — Mov1) +0( +1) —o(i) < —1 whena > 0
andm, ) < m, 41y, and therefore the, ;,1(x) is invertible.
Now let situation (2) hold (that ig =i + 1). Then

Mo (i) < Mo(i+1) = Mo (i+2) (A.20)
ci+2)=0(G+1)+1 (A.21)
Leto” :=0'(i,i+1) =0, i +1)(i+1,i+ 2). We have
o"(i)y=0') =0 +1)
c"i+1) =0 (i+2)=0(+2 (A.22)
d"i+2=c'(i+D =0()
and hence, by (A.20)" > o’ > 0.
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By (A.7) and (A.22) one has

Vor = Rip1i42(E"(0) — §12(0)) Ri i 11(E" (0) — ET1(0) Yo (A.23)
By assumption (A.16) we have
(Piiv1+ Do = 0. (A.24)

Sinceg™, (o) — &,(0) = 1, by the Yang—Baxter equation

Rii+1(E1(0) — E70(0)) Riypiz2(E™(0) — El15(0)) Ry isa(E™(0) — £11(0))
= Ris1ir2(E™(0) — E14(0) Riipa(E™(0)
—&2(0)) Risri42ET1(0) — E75(0)
and by R, ;.1(1) = P.;,1 + 1 we obtain from (A.23), (A.24)
Rit1i42(E(0) — &1 (0) R i1 (™ (0) — E72(0)) (Piyrivz + Dpe = 0. (A.25)

Now (Pii1;42 + DY, = 0O follows by the invertibilty of the operators

RH—LH—Z (E,-m(U) - ‘5,-7}:1(0)) and Ri,i+1 (Sim(ff) - &Tg(ff))-
Situation (3) is considered in virtually the same way as (2) to show that (A.16) entails

(Pi—1i + Dy = 0. (A.26)

Thus (A.10) implies (A.11) and the lemma is proven. ]
From this lemma and (A.8) we obtain

Ve F™ & {(Ys)oesm € Lig. (A.27)

Now we are in a position to show thate W™ implies U™,v € F™. Indeed, by the

definitions of R (o) (5.27) andW/™ (5.18) we have{R)(c)v},esm € Lig and hence
U=, cem ®7(2) ® RO (0)v belongs toF™ as implied by (A.27).
Next, we demonstrate surjectivity of the mag™, : W™ — F™. Let
=) OrQ) @y, e F™ (A.28)
ges™m

Then{vy,}oesm € Lig = VYig € W('f) and by solving relations (A.7) we find

Vo =RO(@)pia (0 €S™. (A.29)

Hencey = U™ ¥iq and the surjectivity follows.
Now supposeU™ v = 0, v € W™. Due to the linear independence of the non-
symmetric Jack polynomial®”*(z) we obtain

RO =0 (c € 5™ (A.30)
and in particulaw = 0 which shows injectivity of the map/™,. This completes the proof
of the proposition. O

For commuting operators (or complex numbers)i = 1,2, ..., N) let To(u) be the
following monodromy operator

To(u, {a;}) '= Lo1(u, a1)Lo2(u, az) - - - Lon(u, ay). (A.31)

Here theL-operator is
Po;
u—+a; ’

LO,,‘(M,CZ,') =1+ (A32)
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The subspacé™ for anym € M%‘) is a Y (gl,)-module with the action given by the
monodromy operator (4.1), (4.4h(u) = To(u, {d;}).

The spaceW™, (5.18) is also a¥(gl,)-module. Now the action is specified by the
monodromy operatofp(u, {£/™(id)}). Indeed with this action we have the identity of the
Yangian modules (5.25):

W =V, (h) ® V(D) ® -+ ® V,, (h2) (A.33)

which is established by the standard fusion procedure taking into accourithatl) =
&™(id) — 1 whenevetn; = m; 1.

Proposition 16.The mapU/™, : W) — F™ is an intertwiner of the¥ (gl,)-modules.
Proof. The intertwining property of th&-matrix:
Lo, (u, & (0) Lo, 41, ET1(0) Ri i1 (8™ (0 (i i + 1) — &7 (0 (i, i + 1))

= R E™0 G, i + 1) — ™0, i +1)
X Lo (u, §™(0 iy i + 1)) Lojr1(u, §T1(0 (i i + 1)) (A.34)

and (5.10) entail the following chain of equatioase W™)):

To) U™ = Y ®7(z) ® To(u: {£™ ()R (0)v

oes™

= > () @ RO (o) Tou. (™ i)}y = U™ To(u, (£ (d)hv.  (A.35)

oesS™
O
Propositions 15 and 16 imply the statement of theorem 1.
Appendix B. Proof of proposition 14
Let us define the vector
B = U(Km)( I b (Vi — r))(U(T))lsz;g) K =—,+) (B.1)

(s,1)
1< =l

whereb,, (1) and v,Sffm, —t are defined in (3.37), (7.15). Notice that the following relations
are satisfied:

VR0 aan = LA A for some scalar functiorf, (-). (B.2)

The calculation of the functiorf, () can be done by comparing the ratio &f (x) with

b (u)(k = —,+). We will calculate the norms 08}, ... Then we will obtain the

(1)
norms ofv,q, -

To calculate the norms af')

o aon» We will derive recursion relations between

(A, AD AN and (A, AD 4ep ., AMD)

and will solve them. HereA ) +e¢,, . is the Gelfand—Zetlin scheme, whosge j')-elements
are)\.j’j/ + 8_,;,,18_//’,,1/.
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Proposition 17.

(EXC()U ,,,,, AD, AGDS 175:(()1> ,,,,, AD . A(M))(K) = (l_JX{()l) ,,,,, ADge, o A EEC)D ,,,,, AD4ep e, A(M)>(K)
X Dyi1 4+ (V) To14+(V — Doy 4 (V) 4 (v — D). (B.3)
Herev = m' -  —1—h(), andwy . (1), @ + (1) are defined by the following relations:
wk,+(”)l_)x(()1) _____ ADe, i AOD = ak(”)vAm ,,,,, A e, . AOD (B.4)
@i+ () = lim (u — u)oy 4 (). (B.5)
u—u

Proof. By using relation (7.12) and (B.2), we obtain

=(x) =(x) _ 5) m
(UAm ..... AD, A VA AG A(M))(K)—<UA(1) ,,,,, AD Ly i, A(M>’U(K)

1=
XCp (v — 1)bm (v— 1)(U(K)) X(()l) AD+te, . A(M))(K)

,,,,,,,,,,,,,

— i =)
- VI/Ian<vA(1) ,,,, A(i)+em,m’ !!!! AM) s U(K)Cm(U 1)bm(v - l)
-1- (K)
X(U(K)) A(l) """ ADge, i, A(M))(I()' (86)

On the other hand, relation (3.42) gives
(v — 1)bm(v/ - 1) = bm(v/ - 1)Cm(v - 1)

+7,{dm("' - Da,(vV' =1 —d,(vV' = Da, (v — 1)}. (B.7)
; (x)
Sincea,, (v — 1)(U(K)) O A0ty s AOD = 0, and
- _ = )
Vllinv b — e l)UA<1> ..... A0ty s A = P (V= Dijo, ADte, 1 AOD
we have
(1-)(’() l_)(K) Yooy = (1) U™p -1 -1
A AD A0 VAD  AD  A0nT k) = <”A<1> ..... Aty rnns Uiy bV = De (v —1)
-1- (K)
><(U(K)) VAD . AD ey oo, A<M>>('<) + ( A<1> ..... ADge, o, AV U(Km)dm v-1
—1= ( ) =
(U gw, AOte, A0 P m (V= 1)
= (k)
= (0% awse, o Ullbu(v = D (v = 1)
—1= (K) ()
X(U(K)) LINC R CE A(M))(I() + (v LN A e, s AOD? U(Km)bm(l) -1
1500 - -1
XCm (V)(U(K)) /;((1) """ AD ey o, A(M))(K)wm,+(v — Do +(v)
= () = (i) - -1
+<UA(1) """ ADgey s A VAQ AD ey e A(M))(K)wm,+(‘) — Do+ (v)
XDy i1,+ W), (v — 1). (B.8)
In (B.8), we used relation (3.43). Then if we show the following lemma, we have proven
proposition 17. O

Lemma 4.In the situation of proposition 17, we have

= (k) 1- ( )
(Ulf(l) ..... A(i)+9m,m/ """ AM) s U(,{"l)bn1(v 1)Cm (U - 1)(U(K)) 1{((1) A“Urem " A(M))(K)

...........

HOR0 a0, pons Um0 = Den()

..........

15 = -1
XU 00 e o) @@ (V= Dy (1) H =0, (B.9)

...........
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Proof. By using relation (3.42), we can show inductively thanif’ + ze,, . € S,» then

Lhs. of B9 = (040 rope, ... aoms Ulbn® = 1) - bp(v = e (v = 1)
X (U(K)) X(()l) ..... AD ey, ey AOD + U(Km)bm W=D bu(v—1)cu()
XU st @m0 = Da (). (B.10)

Let + be the maximal number $t© + te,, ,» € S,»n. From relations (7.12), we obtain

l.h.s. of (B.9
= (U en® =) cn® = DU 00 e, aons Uiyen® = 1)
XU 80 a0 410y pvni T Uiliem (V)
X(U(K)) 15 X(u) AAAAA AO+te, i, A(MJZB_m,-‘r(U - l)wm,+(‘))_l>(:<)- (B.11)

If we apply repeatedly theorem 3.5 from [23] (her,# is some constant),

m’

(@) 13 (1€)
U(Km)cm (l)m m’ )(U(K)) A<1> AD L AGD

..........

_ yrs)m,vx)b ..... AOte, ) AOD if AD+ e, € So (B.12)
0 otherwise
we have
U(Km)cm w—=1)cnlv— 1)(U(K)) 15 AD L AD ey o AGD ™ 0. (B.13)
So we obtain lemma 4. O

Let \k,../ be the Gelfand—Zetlin scheme which corresponds to the highest-weight
vector, the highest weights at&,. 1, ..., An..) (i-€. Ky = Ay TOr all possiblem, m’). If
we solve the recursive relations of proposition 17, we obtain the following.

Proposition 18.

(s) —1
() () —) () 5,
(VA a0 a0 Vad a0 a00)6) = (Vhwys V) o) 1_[ { l_[ { H {(_1)
(m,m’) (s,s") O

. a=i ",
m'<m for all pairs m,m

m'

x [T —j—a+xi)y; +ns) —hs)

j=1
m+1 ,
< T[] o' —j—a+nryly; +hl) —hs)
j=m'+1

xl_[(m/—j—l—a—l—icr(rf)l —i—h(” 5‘;))

X l—[(m —j=l—a+al ) +hS) - hfjg)}

j=m’
W (= = K K+ hG) — hG)
i (= = Ak 4+ h) — )

X
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m,m’ m,j

jomra (' — j =28 4280+ h) — hi)

) mm = =@ A8 Rl —hﬁi})}

m,m

T CHom + o R = 12D }

b (A R — )

m,m’
s<s’

If we rewrite proposition 18 for the bosonic (regbe fermionic) case and take into

account the functiory, (-), we obtain proposition 14.
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